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Nomenclature 
 
 
 
 
 
 
This section presents the general nomenclature used in this thesis. Certain specialized 
terminology is defined locally.    
 
 
Roman symbols            
 
a semi-minor radius of the contact area [m]  
A area of contact [m2]  
b semi-major radius of the contact area [m]  
ca fully plastic contact area ratio to its critical value [-]  
ch hardness factor [-]  
Cm deformation criterion [-]  
d separation [m]  
D deformation and texturing term [-]  
Dd deformation degree [-]  
e eccentricity of the ellipse [-]  
errz error in height measurement [m]  
E equivalent elasticity modulus for combined surfaces  [Pa]  
E1 elasticity modulus of surface 1 [Pa]  
E2 elasticity modulus of surface 2 [Pa]  
E(e) complete elliptic integral of the second kind [-]  
Fp maximum coefficient of friction contribution [-]  
g(y) modified height density [-]  
h cut-off height [m]  
h(x,y) measured surface height [m]  
h’(x,y) surface height as an output of contact model [m]  
h’’(x,y) surface height as an output of wear model [m]  
H hardness of material [Pa]  
Hm measured mean contact pressure [Pa]  
k shear yield stress [Pa]  
K, Kv maximum contact pressure factor [-]  
K(e) complete elliptic integral of the first kind [-]  
l lubricant effectiveness [-]  
L lubrication factor [-]  



 

 

xii 

Lx contact area diameter in principal x direction [m]  
Ly contact area diameter in principal y direction [m]  
mb crystallographic factor of bulk [-]  
ms crystallographic factor of surface [-]  
n work-hardening coefficient [-]  
N number of asperities [-]  
p mean contact pressure [Pa]  
pc initial contact pressure [Pa]  
pm maximum contact pressure [Pa]  
px pixel size in x direction [m]  
py pixel size in y direction [m]  
p0 maximum Hertzian pressure [Pa]  
p0

e elastic limit of Hertzian pressure [Pa]  
p0

s maximum Hertzian pressure at shakedown [Pa]  
p(0) effective maximum contact pressure [Pa]  
P normal force or load [N]  
Ps nominal shakedown pressure [Pa]  
R effective radius of contacting surfaces [m]  
R1 radius of surface 1 [m]  
R2 radius of surface 2 [m]  
Ra center line average (c.l.a.) surface roughness  [m]  
Rai initial center line average surface roughness [m]  
Rm mean effective radius [m]  
Rq root mean square surface roughness [m]  
Rx effective radius in principal x direction [m]  
Ry effective radius in principal y direction [m]  
s sliding distance [m]  
S solid material factor [-]  
t time [s]  
ti incubation time [s]  
T transitions term [-]  
V volume [m3]  
V+ sum velocity, V+ = V1 + V2 [ms-1]  
wb bulk deformation [m]  
y surface height [m]  
Y yield strength [Pa]  
z surface height [m]  
 
 
Greek symbols            
 
α dimensionless semi-axis of contact ellipse in principal x direction [-]  
αhys hysterisis loss factor [-]  
β dimensionless semi-axis of contact ellipse in principal y direction [-]  
δ0 interference at shakedown [m]  
∆0 initial interference [m]  
∆opt ‘equilibrium’ surface roughness [m]  



 

 

xiii 

ε contact model convergence criterion [-]  
εr running-in model convergence criterion [-]  
φ(z) Gaussian surface height distribution [-]  
γ dimensionless interference parameter of elliptical contact [-]  
η lubricant inlet viscosity [Pas]  
ηs asperity density, = N/A [m-2]  
κx curvature in principal x direction [m]  
κy curvature in principal y direction [m]  
λ ellipse ratio, = Rx/Ry [-] 
λi specific oil film thickness [-]  
µ coefficient of friction [-]  
µmax maximum coefficient of friction [-]  
v Poisson’s ratio [-]  
σ root mean square surface roughness  [m]  
τ0 initial surface shear strength  [Pa]  
τb shear strength of bulk [Pa]  
τs shear strength of surface [Pa]  
ψs plasticity index [-]  
ψs

* ‘working’ plasticity index [-]  
ψ2

* plasticity index of soft surface [-]  
ω interference or approach [m]  
ω1 limit of the first yield interference [m]  
ω2 limit of the fully plastic interference [m]  
 
 
Subscripts and superscripts          
  
 
1, 2 surface 1, 2 
a asperity    
c critical 
e elastic   
ep elastic-plastic   
max maximum 
p plastic   
u unloading      
x x direction   
y y direction   
  
 
Abbreviations            
 
AF Abbott-Firestone model    
BL Boundary Lubrication 
c.l.a. center line average 
CEB Chang-Etsion-Bogy model   



 

 

xiv 

EHL Elastohydrodynamic Lubrication    
FEM Finite Element Method    
GT Greenwood-Tripp model 
GW Greenwood-Williamson model 
HL Hydrodynamic Lubrication   
JG Jackson-Green model    
KE Kogut-Etsion model    
ML Mixed Lubrication 
r.m.s. root mean square     
ZMC Zhao-Maietta-Chang model    
 



 

 
 
 
Chapter 1 
 
Introduction 
 
 
 
 
 
 
 
 
1.1. Tribology and rolling contact 
 
In almost every aspect of our daily lives we meet some manifestation of tribology. 
Gripping, holding, sliding, brushing, machinery works, friction between skin and clothes, et 
cetera all demonstrate the impact of tribology. Tribology is defined as the science and 
technology of interacting surfaces in relative motion and of related subjects and practices. 
The nature and consequence of the interactions that take place at the interface control 
friction and wear. Friction and wear are not material properties; they are system properties, 
depending on the materials used and on the operational (contact) conditions. During the 
interactions, forces are transmitted, mechanical energy is converted, physical and chemical 
natures of the interacting materials are altered. The essence of tribology can be constituted 
by understanding the nature of the interactions and solving the technological problems 
associated with the interfacial phenomena. Rolling contacts is one of the most used solution 
to control friction and wear of a load carrying interface in which two bodies are separated 
by rolling elements.     

Consider two nonconforming bodies which touch at a single point, O, see Fig. 1.1. 
During rolling of two surfaces relative to each other, any relative motion can be regarded as 
a combination of sliding, spinning and rolling [1]. Sliding or slip is the relative velocity 
between the two bodies or surfaces at the contact point O in the tangent plane. The spinning 
is the relative angular velocity between the two bodies about the common normal through 
O, and rolling is the relative angular velocity between the two bodies about an axis lying in 
the tangent plane.   

Friction in rolling contacts can be classified into [2]: (a) Free rolling, (b) Rolling 
subjected to traction, (c) Rolling in conforming grooves and (d) Rolling around curves. 
Whenever rolling occurs, free rolling friction must occur, whereas (b), (c) and (d) occur 
separately or in combination, depending on the particular situation. The wheel of a car 
involves (a) and (b), whereas in a radial ball bearing, as shown in Fig. 1.2, (a), (b) and (c) 
are involved, and in a thrust ball bearing (a), (b), (c) and (d) occur. Rolling friction is the 
aaa 
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��������	�: The coordinate system for two non-conforming bodies. 
 
resistance to motion which takes place when a surface is rolled over another surface. The 
term rolling friction is usually restricted to bodies of nearly perfect (continuous) shapes 
with very low surface roughness. With hard materials the coefficient of rolling friction 
between a cylinder or spherical body against itself or a flat body generally is in the range of 
10-5 to 5 x 10-3. In comparison, the coefficient of sliding friction of dry sliding bodies 
ranges typically a 
  
 

 
 

��������	
: Example of radial ball bearing. 
 
from 0.1 to sometimes a value much larger than 1 [3]. If the contact of two non-conforming 
bodies was a point, pure rolling conditions would prevail. However, in most cases, the 
contact region is elastically or plastically deformed, so the contact is made over an area. As 
a result, pure rolling takes place at only a very small number of points, but a combination of 
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rolling with a small degree of sliding or slip takes place at all other points. The sliding 
resistance at the interface has to be overcome and to achieve this slipping and rolling, 
friction must be present [4]. Rolling friction can be caused through several causes; 
however, slip is the most dominant.   

Roughness is an important parameter in rolling contacts with respect to friction 
and wear. The perfection of rolling geometry can be reduced by roughness, so that micro-
slip may occur at roughness level. Plastic deformation of the asperities also causes energy 
losses during rolling motion. The friction force is lower for smooth surfaces than for rough 
surfaces and in almost every case the friction of a rolling contact device drops during 
running-in. 
 
 
1.2 Running-in of lubricated systems 
 
1.2.1 Running-in wear definition and process 
 
When two surfaces are loaded for the first time and moved relatively to one another, 
changes in the condition of both surfaces generally occur. These changes are usually a 
combination of many things, such as the alignment of axes, shape changes, changes in 
surface roughness, and the equalizing of various mechanical and chemical properties 
between the moving surfaces, such as the micro-hardness, which is produced by selective 
work hardening or the formation of oxide layers and other boundary layers. All these 
changes are adjustments to minimize energy flow, whether mechanical or chemical, 
between the moving surfaces [5]. The changes which occur between start-up and steady 
state are associated with running-in (also called breaking-in or wearing-in). Although in 
terms of conservation, wear is always undesirable, running-in wear is encouraged rather 
than avoided. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

��������	�: Schematic representation of the wear behavior as a function  
of time, number of overrollings or sliding distance of a contact under  

constant operating conditions. 
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GOST (former USSR) Standard defines running-in as: “The change in the 
geometry of the sliding surfaces and in the physicomechanical properties of the surface 
layers of the material during the initial sliding period, which generally manifests itself, 
assuming constant external conditions, in a decrease in the frictional work, the temperature, 
and the wear rate” [6]. Summer-smith [7] defines running-in as: “The removal of high spots 
in the contacting surfaces by wear or plastic deformation under controlled conditions of 
running giving improved conformability and reduced risk of film breakdown during normal 
operation”. Running-in occurs in the first period in the life-time of a rolling or sliding 
contact of a lubricated system, which is schematically shown in Fig. 1.3.      

Prior to running-in, the various pairs of contacting surfaces in, for instance, a new 
engine are not ‘mated together’ . There may be a slight initial misalignment and there will 
certainly be ‘high spots’  on all surfaces. Initially the clearances will be small and therefore 
the cooling flow or oil is low and this, together with the initial higher friction, leads to 
operating temperatures higher than normal. During the running-in period, the high spots left 
from the final machining process are reduced by plastic flow, voids are filled and overall 
shapes are matched. The higher temperatures usually cause higher wear rates, but as the 
surfaces become smoother and the more prominent asperities are flattened, the wear rate 
falls to a steady state. There are two dominant mechanisms in the running-in period; plastic 
deformation and mild wear [8]. The plastic deformation mechanism is similar to roller 
burnishing; the asperities literally get squashed down. The change of the surface 
topography can be the amplitude and/or the texture depending on the load and moving 
direction. The higher asperities are rubbed off. This mechanism is also called truncating or 
censoring the height distribution. Frictional losses usually decrease during this period and 
contact clearances increase, thus reducing the surface temperatures. The wear rate decreases 
until it reaches the normal steady-state wear rate for the design contact pairs. The wear rate 
during running-in, even when misalignments are minimal, is higher than during normal 
running.  
 After the running-in period, of which duration is invariably depending on the 
tribo-system, the full service conditions can be applied without any sudden increase in wear 
rate. The load carrying capacity reaches to its operating design. The steady low wear rate 
regime is maintained for the designed operational life. The term steady state is defined as 
the condition of a given tribo-system in which the average dynamic coefficient of friction, 
wear rate, and other specific parameters have reached and maintained a relatively constant 
level [9].              

The wear rate may rise again once the operating time becomes sufficiently long for 
a fatigue process to occur in the upper layers of the loaded surface. A significant 
contribution to material loss driven by cyclic loading is started. The particles from such a 
fatigue wear process are characteristically much larger than the small fragments associated 
with adhesive or abrasive wear [10]. This form of wear generates a ‘pitted’  surface (pitting 
failure). Once the wear particles due to fatigue wear accumulate the surface, it will wear-
out i.e. total failure occurs. 

 
 

1.2.2 Running-in friction 
 
The friction and the change of the average roughness behavior during the life-time of a 
rolling/sliding contact are schematically presented in Fig. 1.4. There are two phases during 
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the running-in period, i.e. Phase I and Phase II. In Phase I, the coefficient of friction 
strongly decreases and the change in surface topography shows similarities with the 
decrease of the center line average roughness, Ra, value. As was mentioned previously, the 
plastic deformation is the main factor in changing the surface topography. In Phase II, there 
is only a slight decrease in the coefficient of friction as well as in the reduction of Ra for 
quite some time. In this phase mild wear is considered due to the removal of boundary 
layers formed by a reaction of the additives and oxygen in the lubricant and the contacting 
metal surfaces.       

Schipper [11] studied the running-in effect on the frictional behavior of lubricated 
concentrated contacts, which can be represented in generalized Stribeck curves, as shown in 
Fig. 1.5. The coefficient of friction, µ, is plotted as a function of the lubrication number, 
(ηV+)/p or H, in a logarithmic scale. η is the lubricant inlet viscosity, V+ is the sum velocity 
and p is the mean contact pressure. During the running-in period, the decrease in the micro-
geometry increases the hydrodynamic action.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

��������	�: Schematic representation of friction and the change of roughness as a 
function of time, number of overrollings or sliding distance of a contact under  

constant operating conditions. 
 
 
The succeeded running-in increases the load carrying capacity, i.e. increases the 
hydrodynamic action hence decreases the friction at constant operational conditions. For 
the low pressure situation (Fig 1.5a), running-in manifests itself by shifting the mixed 
lubrication (ML) regime to lower values of the lubrication number, H and by decreasing the 
coefficient of friction. The change in micro-geometry affects the coefficient of friction in 
the boundary lubrication (BL) regime to lower values. The same shifts are found for the 
high pressure situation, except that the minimum coefficient of friction, at the transition 
from mixed lubrication to elasto-hydrodynamic lubrication (E(HL)) regime, shifts to higher 
values.      

Time, number of overrollings or sliding distance 

Phase I Steady state Phase II 

Friction 

Ra 

Lubricated 
System 

F
ri

ct
io

n 

R
ou

gh
ne

ss
 



 

 

6 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
    (a)                          (b) 
 

��������	: Running-in effect at: (a) low pressure and (b) high pressure [11]. 
 
 
1.3 Objective of this thesis 
 
Running-in is an effective way of matching two contacting components in a functional 
situation of rolling and/or sliding. As mentioned in the previous section there are many 
parameter changes during running-in, chemically or mechanically. However, the change of 
the micro-geometry due to wear or plastic deformation is dominant.     

Two historical terms are particularly associated with running-in: asperity 
truncation and elastic shakedown. In asperity truncation, most studies have been done on 
modeling the surface statistically. The shape change of the amplitude distribution curve 
after the running-in has taken place is shown in Fig. 1.6. One would expect the change of 
the statistical surface parameters such as average roughness, root-mean-square roughness, 
peak-to-valley height, slope, et cetera during running-in. However, the change of the 
surface topography is in fact not only the height distribution (one dimension) but change in 
three dimensions in order to conform to each other. Elastic shakedown is the process in 
which a surface which initially yields plastically during running-in, eventually reaches an 
elastic shakedown limit in which the behavior of the near-surface layer is no longer plastic, 
but has reached a condition which is sufficient to support contact pressure elastically. 

In most of the contacting engineering surfaces, the coefficient of friction and wear 
are decreased due to the running-in process. Plastic deformation leads to the increase of the 
contacting area and as a result, the mean contact pressure decreases or the load carrying 
capacity is increased. It is worth noting that if the plastic deformation occurs 
macroscopically, the change of the roller diameter in roller bearing for instance, there will 
be a failure of functionality. But if the plastic deformation occurs microscopically, i.e. on 
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roughness level, the functionality performance of the machine components will be 
increased.    

The objective of this thesis is to predict the process roughness of the surface after 
the running-in period of rolling contact deterministically. The running-in process is 
complicated, the number of variables involved are numerous. This thesis will focus only on 
the prediction of the plastic deformation of the micro-geometry of the contacting metal 
surfaces which operate in the near or pure rolling situation.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

��������	�: Effect of running-in on the surface profile, reproduced from [5]. 
 
 
1.4 Outline 
 
A brief background and the objective of this thesis have been stated in this chapter. The 
next chapter will give a review of the available literature on the study of running-in both 
theoretically and experimentally. An extensive explanation about the background of this 
work is given in this chapter.  
 In Chapter 3 an asperity contact model is presented. A new elastic-plastic or 
elastoplastic contact model is developed as a foundation for the running-in model. Some 
experiments have been performed in order to validate the developed contact model. A 
further investigation on the contact model has been extended to the contact of rough 
surfaces deterministically in Chapter 4. Some approaches have been applied to define an 
asperity on real surfaces. In this chapter the criteria of surface flattening are developed, 
there are three types of deformation on the real contact of surfaces: asperity deformation, 
bulk deformation or a combination of asperity and bulk deformation. Attention is paid only 
to the deformation of the asperity as the main effect of the running-in process. To validate 
the rough surface contact model, experiments are performed. 
 In Chapter 5 the running-in model will be presented. The developed contact model 
in Chapter 3 and 4 is used to build the running-in model in which the contact situations 
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change in time. The theoretical results in this chapter will be compared to the experimental 
results. Finally, conclusions are drawn and recommendations are given in Chapter 6. 
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Chapter 2 
 
Running-in: a literature survey 
 
 
 
 
 
 
 
 
2.1. Introduction 
 
Running-in is categorized as the first part of the life-time period of rolling or sliding 
contacts. Friction and wear mechanisms occurring during the running-in process have been 
briefly presented in the previous chapter. Chapter 2 presents the changes in a tribo-system 
during the running-in process in more detail, based on a literature survey. Although the 
subject is somewhat vague, numerous investigations have been conducted to study running-
in. Most studies are based on experiments in order to get an impression of the running-in 
behavior. The experimental work done by Hirn in 1854 is probably the first study on 
running-in [1]. The effect of running-in upon bearing friction was discovered and it pointed 
out that lubricated bearing must be run continuously for a certain time before a steady value 
of friction is attained. However, the running-in process is a complicated phenomenon 
related to surface texture, geometry, film formation, chemical and physical properties of 
materials in contact, lubricant or additives, operating conditions and so on and is not well 
understood yet. 

The following sections describe published articles on running-in. Articles based on 
experiments on running-in are presented in Section 2.2 and 2.3. The changes in surface 
micro-geometry after running-in are explored in Section 2.2. Section 2.3 focuses on the 
factors influencing the effectiveness of running-in. Section 2.4 deals with the theoretical 
works published on running-in. The available running-in models are reviewed. A summary 
is given at the end of this chapter.   
 
 
2.2 Changes in surface micro-geometry 
 
As discussed in Chapter 1, the initial surface topography is one of the most important 
factors influencing the running-in process. Various researchers studied the effect of the 
initial surface topography on the running-in performance. Sreenath and Raman [2] showed 
that the initial surface roughness is the most influencing factor in the conformity between 
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cylinder liner and piston rings of an internal combustion engine. Anderson et al. [3] found 
that the initial surface roughness strongly influences the initial dynamic coefficient of 
friction and the running-in distance required. The coefficient of friction is reduced from a 
level typical for boundary lubrication to a level typical for full film lubrication. 

Rowe et al. [4] performed a basic investigation of surface topography changes 
during running-in of grease-lubricated plain bearings. It was shown that the initial surface 
roughness of the hard shaft is the governing factor, whilst the initial topography of the 
softer member has less effect on the running-in equilibrium roughness. If the difference in 
hardness of the two contact surfaces is large, cutting and ploughing will take place easily 
and requires therefore the roughness value of the hard surface to be as small as possible [5]. 
To study the effect of surface topography on running-in, most of the literature considers one 
surface to be relatively smooth and hard running against a deformable rough surface. Only 
a few articles study the contact between two deformable rough surfaces on running-in. For 
example, Chou & Lin [6] used the same hardness of rollers and discs to study the effect of 
roughness and running-in on oil-lubricated line-contacts. Results show that running-in 
increases the roughness of smooth rollers but decreases the roughness of rough rollers.  

The changes of some surface parameters during running-in have been compared 
by Stout et al. [7], Whitehouse [8] and Foucher et al. [9] as shown in Fig. 2.1. The average 
peak curvature is the parameter which changes most rapidly as the load increases. The 
common type of height parameters such as Ra and Rq do not change quickly. It was 
suggested that the most relevant and straightforward approach to quantify wear during 
running-in is to quote both the skewness and a profile height parameter. The skewness is 
used for quantifying the change of the shape of height distribution. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

��������	
: Variation of surface parameters as a function of load during 
 running-in, after [8]. 

 
The surface finishing methods have significant contribution to friction and wear 

during running-in. It was shown by [10, 11] that by suitable modification of the surface 
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topography, keeping the average roughness, Ra, constant, friction can be reduced. Plateaued 
surfaces have a shorter running period than non-plateaued surfaces [12, 13]. Running-in 
performance can also be increased by modifying the lay direction of the surfaces [14-16]. 
Surface roughness with a transversely oriented pattern gives a lower friction than the other 
roughness patterns (longitudinal or oblique). This phenomenon is caused by an increase in 
oil film thickness with transverse roughness compared to the longitudinal roughness [17, 
18].  

The effects of waviness and roughness on the running-in of lubricated contacts 
have been studied by Wu & Zheng [19]. Running-in changes the roughness but hardly 
changes the surface wavelength. An appropriate surface waviness is necessary for the 
formation of an oil film between parallel sliders. Pawlus [20, 21] studied some connections 
between the cylinder surface micro-geometry and functional parameters of the piston ring-
cylinder assembly during running-in. From the results, it was concluded that cylinder wear 
during running-in mainly depends on both the roughness height and the shape of the 
roughness profile distribution.  

The change of the initial surface roughness and friction as a function of running-in 
time was explored in more detail by Wang et al. [22]. In their experiments, a two disk 
machine was employed to perform the rolling and sliding tests. A new optical technique 
method has been applied to measure the roughness of the running surface in real-time [23]. 
Results showed that the rougher the initial surface, the larger the ratio of roughness change 
(Fig 2.2a). This is different from the presumption that the final or process roughness after 
running-in depends mainly on the operational conditions such as material, temperature, 
lubrication contaminant and so on instead of on the initial roughness [24, 25]. However, the 
final friction forces with surfaces of different initial average roughness, Rai, have similar 
values after running-in. This indicates that the surfaces have similar effects on lubrication 
due to their degree of conformity after running-in.  
 
 
 

     
 

                     (a)                                                                       (b) 
 

��������	�: Variation of Ra and friction force as a function of running-in time for different 
initial roughnesses (slip ratio 0.6 and Hertzian pressure 0.22 GPa), 

 after Wang et al. [22]. 
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The plasticity index is also used as a criterion for evaluating the effects of surface 
topography during running-in [19, 26]. A random isotropic surface with a very low average 
asperity slope and very low plasticity index demonstrate no run-in characteristics.   
 
 
2.3 Effective running-in 
 
The mechanism governing the formation of asperities during running-in is a complex 
process and is formed by the action of periodic factors and numerous random effects [24]. 
Plastic deformation, fatigue damage and in some cases micro-cutting, scuffing and 
ploughing occurs. If the hardness of the contacting pairs differ the softest of the mating 
surfaces undergoes most change, and during running-in its roughness changes so that it 
approximates the roughness of hard surface, until certain equilibrium is attained.  

Kragelsky [24] presented some factors influencing the effectiveness of running-in. 
All these factors are interconnected so it is difficult to study their effects on running-in 
separately. However, the main factors influencing the effectiveness of running-in are load 
and velocity, the initial physicomechanical of the materials and the lubricant.   
 
 
2.3.1 The influence of load and velocity 
 
In practical situations running-in takes place by increasing the load and velocity 
continuously or stepwise. The load has a significant effect on the quality and duration of 
running-in. By increasing the load during the initial period of running-in the proportion of 
plastic deformation of a thin surface layer increases [24]. This leads to an increase of the 
overall work done, heat evolved and energy absorption. High mechanical stresses arise 
from an increase in pressure in the contact area. The quality of a run-in surface is improved 
by increasing the contact pressure to a value not exceeding a certain critical contact 
pressure. Increasing the contact pressure beyond its critical value will lead to severe wear. 
Kelly & Critchlow [27] concluded that the dominant effect of enhancing the loads and 
temperatures which lubricated surfaces can resist without severe wear prior to running-in, is 
reduction of surface roughness. 

Cavatorta & Cusano [28] showed that the smoothening of surfaces is increased by 
increasing the pressure. For higher velocities a more negative skewness is produced. 
However, the optimal pressure/velocity run-in procedures were shown to depend on the 
operating conditions. The range of running velocities is always related to the formation of a 
surface layer which prevents severe wear [29, 30]. Under high velocity severe wear 
resistance improvement can be obtained only if there is significant smoothening of the 
rough surfaces.  

Wang et al. [22] investigated the effect of the sliding/rolling ratio on the change of 
surface roughness during running-in. It was shown that the change in Ra is not 
straightforward with the change of the sliding/rolling ratio. The change in Ra increases with 
the increase in the sliding/rolling ratio for low sliding/rolling values but it decreases with 
the increase in the sliding/rolling ratio for high sliding/rolling values, see Fig. 2.3. The 
change in roughness relates to wear loss of the materials. The amount of wear will be larger 
when there is a small amount of sliding at the surface than when the surface is run under 
pure rolling. The sliding action downgrades the lubrication effect and increases the shear 
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stresses. However, the wear loss is smaller under a higher sliding/rolling ratio in the high 
sliding/rolling ratio region. In this region the wear mechanism is different from the low 
sliding/rolling ratio region. Oxidation is dominant and the thin oxide layer formed on the 
surface can act as a solid lubricant and protect the surface. Schipper et al. [31] studied the 
effect of the travel mode of the motion on the running-in behavior of lubricated 
concentrated contacts. It was shown that the gradual change of the surface roughness is 
strongly dependent on the motion mode and the lubrication regime. If the contact operates 
in the boundary lubrication regime, the influence of the motion mode becomes minimal.  

 
 
 

 
 

��������	�: Variation in Ra as a function of time for different sliding/rolling ratios 
(combined velocity 2 m/s, load 4 kg and Hertz pressure 0.22 GPa) [22]. 

 
 

 
 

��������	�: Variation in Ra as a function of time under different normal loads [22]. 
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The smoothening process of rough surfaces by increasing the load has also been 
presented in [22]. The surfaces started with almost the same surface roughness and ended 
with different roughness values as a function of the load, see Fig 2.4. The larger the applied 
load the lower the surface roughness after running-in. It is reasonable that more flattening is 
induced by a higher load which is beneficial for decreasing the contact pressure. 
 
 
2.3.2 The influence of lubricants and additives 
 
Under unchanged contact conditions, the presence of lubricants and additives has a 
significant effect on the change in micro-geometry during running-in [24]. Significant 
shortening of the running-in time and smoothening of the surface can be achieved by using 
polymer additives in the oil. The polymer changes due to rupture by mechanical action, and 
the surface active substances react with the fresh metal surface and plasticizes the thin 
layer.     
 Rowe et al. [4] evaluated the performance of greases with extreme pressure and 
solid-lubricant additives on running-in of plain bearings. Tests on grease-lubricated 
bearings showed that the surface is progressively smoothed as running proceeds, however, 
after a few hours it breaks down. Similar greases with a chlorinated extreme-pressure 
compound additive give the same smoothening but breakdown is prevented. By using 
Molybdenum Disulphide (MoS2) similar no-failure results were obtained but the initial 
smoothing was retarded. The influence of MoS2 was also studied by Braithwaite et al. [32] 
on the mechanism of piston-ring wear during the running-in process. It was concluded that 
the use of MoS2 additive is effective in modifying the mechanism of wear during running-
in so that metal-to-metal contact is reduced and the change in surface topography is 
achieved mainly by plastic deformation rather than by adhesive or an abrasive wear process 
which mainly occurs when using conventional break-in oil. MoS2 has great resistance to 
penetration and, at the same time, facilitates sliding and thus promotes the reduction of 
surface asperities by plastic deformation rather than by shearing.  

The use of a running-in compound which is added to the fuel was found to shorten 
the running-in time without any harmful effects. This study was applied to the running-in of 
a locomotive diesel engine in an attempt to improve the resistance to scuffing or severe 
wear [33]. Murakami et al. [34] used a Dibenzyl Disulphide (DBDS) additive to study the 
significance of tribochemical effects on running-in in four-ball testing. Results showed that 
oxide films and Sulphur compounds are formed and the rubbing surface becomes extremely 
smooth.    

Although lubricant has a significant effect on shortening the running-in time, a 
careful choice must be taken in order to get an optimum for the running-in process. The 
performance of the lubricant and in particularly the additives depends mainly on the contact 
temperature [9]. Another aspect of the lubricant during running-in is the oil film thickness. 
Khurshudov et al. [35] studied the effect of oil film thickness on the wear rate. For the 
initial value of the specific oil film thickness, λi (oil film thickness over roughness ratio) < 
0.5 causes both a high wear rate and a high surface roughness of the contacting surfaces. 
The increase of the λi value from 0.5 to 0.75 causes a significant decrease of wear rate and 
a steady-state roughness for both contacting surfaces. Further increase of λi above 0.75 
does not affect the wear rate and roughness significantly anymore. This is because of their 
appreciable separation by an EHL film. 
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2.4 Modeling running-in  
 
2.4.1 The model of Blau  
 
From published work Blau [36] collected numerous examples of running-in experiments, 
which resulted in sliding coefficient of friction versus time behavior graphs, and own 
laboratory experiments in order to be able to develop a physical realistic and useful 
running-in model [37]. A survey of literature revealed eight common forms of friction 
versus sliding time curves (Fig. 2.5). Some of the possible occurrences and causes related to 
each type of friction curve illustrated in Fig. 2.5 are indicated in Table 2.1.  

The friction curve most observed in experiments on the running-in bearings is 
curve f in Fig. 2.5. One possible mechanism in this curve is the crystallographic 
reorientation of near-surface microstructures during the early stages of running. Once a 
preferred crystal texture is achieved, a steady state micro-structural resistance to running 
direction is acquired. The micro-geometry conformity also contributes much in lowering 
the coefficient of friction in this friction-curve behavior. However, at extreme heavy loads, 
a given initial surface finish may have much less contribution, since the first running of a 
heavily loaded component could remove all traces of the initial surface roughness.      

The basic shape of the transition curves as shown in Fig. 2.5 is a starting point for 
developing a semi-empirical running-in model. The model can be represented in its simple 
form as a product of two factors: 

 
)()()( tStLt =µ  (2.1)      

 
where µ(t) is the time-dependent coefficient of friction, L(t) is the time-dependent 
lubrication factor, and S(t) is the time-dependent contribution of the solid materials in 
contact. Each factor in the model is further broken down into a form which permits the 
magnitude and rate of change in the different frictional contributions to be incorporated. 
 The lubrication factor modifies the contribution of the friction of solids in contact 
and its value ranges between 0 and 1. If the lubricant is absent or fails to prevent solid 
contact, L(t) = 1. If the lubrication chosen for the system works well from the start and 
continues to do so, L(t) may taken as a constant value, typically between 0.001 to 0.1. The 
time dependence of the lubrication factor L(t) during running-in is written more generally: 
 

  ( )
l

tL
+

=
1

1
  (2.2)   

 
and l is the lubricant effectiveness: 
 
  Atell −= 0  (2.3) 
 
where l0 is the initial lubricant effectiveness, A is a rate constant, and t is the running time. 
If the lubrication effectiveness l is 0, then the L(t) = 1. The effectiveness of the lubricant 
decreases if A is positive. 
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��������	: Eight commonly observed forms of initial frictional behaviour as a function of 

time or sliding distance, after Blau [36]. 
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������
	
: Possible causes for friction break-in curve shapes, after [38]. 
 

Type Occurrence Possible cause(s) 

 
a 
 

b 
 
 
c 
 
 

d 
 
e 
 

 
 

f 
 
 

g 
 
 

h 

 
Contaminant surfaces. 
 
Boundary-lubricated metals. 
 
 
Unlubricated oxidized metals, 
often observed in ferrous or 
ferrous/nonferrous pairs.  
Same as type c. 
 
Coated systems; also, systems 
in which wear is controlled by 
subsurface fatigue processes. 
 
Clean, pure metals. 
 
 
Graphite on graphite; metal on 
graphite. 
 
Hard coatings on ceramics.  

 
A thin film of lubricious contaminant is 
worn off the sliding surface(s). 
Surfaces wear in; initial wear rate is high 
until the sharpest asperities are worn off 
and the surface becomes smoother. 
Wear-in, as in b, but with the subsequent 
development of a debris layer or excessive 
transfer of material. 
Similar to c, but the initial oxide film may 
be more tenacious and protective. 
Wear-through of a coating; or subsurface 
fatigue cracks grow until debris is first 
produced (the debris creates third bodies), 
which induce a rapid transition in friction 
Changes in crystallographic orientation in 
near-surface layers reduce their shear 
strength and lower the friction. 
Creation of a thin film during running-in; 
debris or transfer produces a subsequent 
rise in friction. 
Roughness changes, then a fine-grained 
debris layer forms. 

 
 
 In this simple model, the lubricant factor is treated as being independent of the 
solid bodies’  behavior. Clearly, when the surface roughness changes during sliding, the film 
thickness to roughness ratio will be affected, which, in turn, affects the regime of 
lubrication, therefore the changes in the solids could ultimately affect L(t).   

The time-dependent contribution of the solid materials S(t) to the friction can be 
represented as follows: 

 
( ) VTDtS ++=  (2.4) 

 
where D is the initial deformation and texturing term, T is the transitions term, and V is the 
magnitude of the variability in the coefficient of friction which can derive from any source. 

Based on the consideration that the friction is governed by the properties of the 
softer material of the two mating surfaces the initial deformation and texturing term is 
defined as: 
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where τs and τb are the shear strengths of the work-hardened surface and bulk material, 
respectively; ms and mb are the crystallographic factors for the surface and bulk material, 
respectively; and C is a constant derived from considerations of the contact area. Another 
possible form of D which relates the rate of change in friction to work-hardening 
coefficient n, by a system-dependent constant m is: 
 

 ( )[ ]
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�
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0max
max τ

ττµ  (2.6) 

 
where µmax is the maximum coefficient of friction after break-in, τmax is the maximum 
surface shear stress, τ0 is the initial surface shear stress and t is the running time. It is 
suggested by Blau that the user of the model should use the D form, because it is most 
descriptive of the physical situation encountered. 
 The transition term T is designed to account for longer term, non-induced changes 
in the friction force, those that may require an incubation period. One example is the 
development of subsurface fatigue damage, which eventually results in the production of 
wear particles, which in turn cause a rapid transition to three-body contact. The T form for 
modeling the friction curve of type e in Fig. 2.5 is: 
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in which Fp is the maximum coefficient of friction contribution of the transition process, ti 
is the incubation time to the midpoint of the transition and b is a rate constant for 
aaaaaaaaaa 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

��������	�: Illustration of how Equation (2.7) can be used to model longer term 
transitions in frictional behavior, after Blau [38]. 
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determining how fast the transition occurs. Finally, several kinds of frictional behavior can 
be represented by summing up contributions of the various terms and factors after the 
proper time scales and magnitudes of contributory processes have been determined. The 
combined effect of individual terms and factors in the production of the type of curve in 
Fig. 2.5e is illustrated in Fig. 2.6. By using various combinations of L, D and T terms, all 
the curve shapes in Fig. 2.5 can be produced. 
 The V term in Eq. (2.4) is the variation term indicating the contribution to the 
amplitude of the instantaneous coefficient of friction from any of several interfacial and 
instrumental factors. A ‘frictional noise’  for instance can produce a spurious line in the 
coefficient of friction.  
 It can be summarized that a simple generalized model of Blau is able to generate 
the various types of frictional transitions including the running-in friction. However, the 
model may be applied to a frictional system behavior globally rather than to study the local 
micro-geometry changes which affect the global frictional behavior.   
 
 
2.4.2 The model of Kapoor et al. 
 
In static contact situations in which the contact pressure is lower than the elastic limit or 
yield stress, a material element will return to its original geometry once the load has been 
removed. If the contact pressure is larger than the elastic limit then some material will 
undergo plastic flow. There are two significant consequences with respect to this situation; 
residual stresses will develop and the material may strain-harden so increase its effective 
yield stress [39].  
 In repeated contact situations, the developed residual stresses will increase the 
yield stress for the subsequent loading. These residual stresses are essentially protective, 
together with any effects of strain-hardening and geometric changes which may ensure that 
the repeated contact is still in the elastic regime. This process is referred to as shakedown. 
Shakedown is the process in which a cyclically loaded structure or material element 
deforms plastically at the first loading and finally achieves a steady state in which the 
response is perfectly elastic [40]. The influence of residual stresses in promoting 
shakedown was governed by the Melan’ s theorem [41] which states: “ If any system of self-
equilibrating residual stresses can be found which, in combination with the stresses due to 
the repeated load, do not exceed yield at any time, then elastic shakedown will take place” . 
These processes are illustrated in Fig 2.7.  
 The response of the structure is entirely elastic for loading up to the elastic limit 
(Fig. 2.7a). The plastic flow is encountered when applying the load above the elastic limit. 
The shakedown process takes place and the structure responses to the elastic steady-state. 
The upper limit for this behavior is shown as elastic shakedown limit in Fig. 2.7b. When 
increasing the load, the plastic flow is encountered, even in the steady-state condition. If the 
load is below the plastic shakedown limit (Fig.2.7c) a closed cycle of plastic deformation 
occurs. In this stage plastic flow occurs at two instances in each load cycle but there is no 
net accumulation of deformation. However, if the load lies above the plastic shakedown 
limit, then an open cycle of plastic deformation occurs and the material accumulates small 
increments of plastic deformation in each loading cycle or ratcheting (Fig.2.7d).  

Kapoor & Johnson [42] consider running-in as a shakedown process. They 
hypothesize that due to plastic flow in early passages of a body, the shape and height of 
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asperities at the surface will be modified as such that, in steady state, the load will be 
carried purely elastically in order to model running-in. This approach has been used 
extensively to different applications [40, 43]. A rough surface of 2D cylindrical asperities 
of equal radii aaa 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 ��������	�: Response of a structure or material element to cyclic loading [39]. 
 
and following a Gaussian distribution is considered. This surface is slid by a hard regular 
surface which has 2D cylindrical asperities of equal height and radii. A unit event is 
introduced as a basis of the model. The unit event is taken to be that of the cylinder 
asperities pushing against each other when passing as is shown in Fig.2.8a. During an 
elastic contact, contact pressure rising from zero at point A to a maximum at B and failing 
to zero at D with semi-contact width a (Fig.2.8b). Above a critical value of �0, the pressure 
p0 exceeds the elastic limit p0

e whereupon the shakedown mechanisms, such as developing 
residual stresses, geometry changes and strain hardening occur. The deformed asperities 
adopt a shape which supports the contact pressure at the shakedown limit throughout the 
interaction (Fig.2.8c).  

Based on the shakedown hypothesis [43] a constant C is defined by: 
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where v is the Poisson’ s ratio, p0

s is the shakedown pressure for the given friction 
conditions as shown in Fig. 2.9, where k is the shear yield stress and the equivalent elastic 
modulus of the two surfaces is given by 1/E = [(1-v1

2)/E1 + (1-v2
2)/E2].  

Considering surface 1 as a rigid regular surface and surface 2 as a deformable 
Gaussian surface, the modified distribution g(y) of surface 2 after shakedown (in steady 
state) is represented by: 

Elastic limit 
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R1 is the radii of surface 1, d is the separation between the surfaces, σ is the standard 
deviation of peak heights of surface 2, C is as defined in Eq. (2.8), and y is the new height 
of the deformed asperity. It must be remembered that the modification of heights is possible 
only when (�0/RC) > 1, where 1/R = 1/R1 + 1/R2 and R2 is the radii of surface 2. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
��������	�: (a) The unit event (b) Variation of pressure and semi-contact width on 

undeformed profile and (c) Variation of pressure on shakedown profile [42]. 
 
The range of y for which equation (2.9) is valid is: 
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where t is the ratio of the radius R1 of the non-deforming asperity to the radius R2 of the 
deforming asperity. The asperities remain undeformed and the distribution unchanged in 
the range y: 
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��������	�: Shakedown limits to be used in Equation (2.8), [42]: 
 A  Lateral asperity (perpendicular to sliding) 
 B  Longitudinal asperity (parallel to sliding) 
 C  Kinematic hardening for both the lateral and longitudinal asperity  

 
The new distribution of asperity heights is completely defined by equations (2.9) to (2.12) 
which depend only on the non-dimensional separation (d/σ) and the non-dimensional group 
(R1C/σ).  
 The proposed model was validated by the experimental results [44] as is shown in 
Fig. 2.10. In that experiment a bead blasted mild steel pad was pressed against an oil 
lubricated rotating hard steel which had been finely ground. The experimental results fit 
satisfactorily in spite of the fact that the surface roughness of the specimen was isotropic, 
while the theory was developed for linear roughness.   
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��������	
�: Modification of peak heights: � is the original Gaussian distribution, -- is 
the modified distribution for t = 0.5, 1, 2, and � experimental results [42]. 

  
The model has been extended to the more realistic situation in which the hard 

surface is also randomly rough and the asperity heights follow a Gaussian distribution, but 
their radii remain constant [45]. The non-dimensional nominal pressure at shakedown for 
point contact was derived as: 
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Ps is the nominal shakedown pressure, p0

s is the asperity shakedown pressure, N is the 
number of asperities per unit area, R1 is the radius of hard asperities, ψs is the plasticity 
index, h is the cut-off height of hard asperities and σ1 is the r.m.s. roughness of hard 
asperities. Eq. (2.13) has been evaluated numerically and the resulting values of the 
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nominal shakedown pressure are plotted against the value of ψs in Fig. 2.11 for various 
values of h/σ1.  

The process of running-in can be interpreted by referring to Fig. 2.11. Initially, the 
softer surface has asperities with radius R2 and r.m.s. height σ2. A ‘working’  plasticity 
index ψs* in repeated sliding was introduced to take into account the changes in those 
quantities as: 
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where R = R1R2/(R1+R2) and σ = (σ1

2+σ2
2)1/2.  
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: Shakedown map for rough surfaces (one hard, the other soft) in sliding 
contact, after Kapoor et al. [45]. 

 
In the first sliding pass, the system can be represented by a point somewhere in Fig. 2.11 
with coordinates ψs* and Ps. If the point lies below the shakedown curve, then the load is 
carried purely elastically without any change in the softer surface topography. However, if 
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the point lies above the shakedown curves, plastic flow will occur during sliding and the 
softer asperities will deform. R2 will increase and σ2 will decrease such that ψ2* will 
reduce. The run-in (shakedown) state will be reached if, and only if, the curve in Fig. 2.11 
is crossed with R2 less than infinity and σ2 greater than 0. If R2 = � and σ2 = 0 (i.e. when the 
soft surface has become flat and thus is capable of carrying its maximum load) the point 
still lies to the right of the shakedown curves, then running-in will not lead to the conditions 
of elastic sliding and the steady state will be one of repeated plastic deformation.  
 The model of Kapoor is promising with respect to running-in, however, there is a 
shortcoming, the radius of the asperities is assumed to be equal, and that should be taken 
into consideration for the improvement of the model for real rough surfaces. 
 
  
2.4.3 Other models 
 
Based on a statistical approach King et al. [46] consider truncating functions of triangular 
and Gaussian shape to obtain the run-in height distribution, but there is no theoretical basis 
for the choice of the truncating functions or its standard deviation. Other approaches have 
been applied by researchers for modeling running-in other than the statistical approach. 
Masouros et al. [47] and Kumar et al. [48] used polynomial analytical expressions, Lin & 
Cheng [49] and Hu et al. [50] used a dynamic system approach and Shirong & Gouan [51] 
used scale-independent fractal parameters. Liang et al. [52] used a numerical approach 
based on the elastic contact stress distribution of a three-dimensional real rough surface 
while Liu et al. [53] used an elastic-perfectly plastic contact model. 

Kragelsky et al. [24, 54] described several approaches to model running-in. One of 
them considers the conditions necessary to reach the optimum, ‘equilibrium’  surface 
roughness �opt, at which friction will be the lowest:  
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where τ0 is the shear strength of the asperities, pc is the initial contact pressure, αhys is the 
hysteresis loss factor (change in strength properties as a result of sliding) which is 
determined by uniaxial tension and compression experiments, v is Poisson’ s ratio, and E is 
the elastic modulus.  

Recently, Jeng and co-workers have developed a model which describes the 
change of surface topography of general surfaces during running-in [55]. Principally, the 
model is based on the wear model of Sugimura et al. [56] and the distribution translatory 
system of Johnson [57]. The Johnson’ s translatory system transforms the surface height of a 
non-Gaussian surface into that of a Gaussian surface.  
 
 
2.5 Summary 
  
Studies on running-in have been performed for many years, however, due to the complexity 
of its phenomena many problems have not been solved yet.  A review of the theoretical and 
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experimental published work regarding running-in has been presented in this chapter. The 
following points have been observed from this literature review: 

1. There are two dominant mechanisms during running-in of lubricated contacts 
process, i.e. plastic deformation due to normal loading and mild wear. These 
mechanisms are associated with the change of the initial surface topography. 
Running-in only changes the surface roughness but hardly change the surface 
wavelength. If the initial surface roughness is very smooth it will end up to a 
rougher one and conversely, if the initial surface roughness is quite rough it will 
end up a smoother one as running-in proceeds.        

2. Most studies, both theoretical and experimental, consider contacts between hard 
smooth surfaces against soft rough surfaces in sliding motion.  

3. Increasing loads is the most effective way to accelerate running-in, however, by 
increasing the loads severe wear occurs easily. In order to reduce severe wear, 
lubricants and additives are most frequently used. 

4. Statistical approaches have been used widely for modeling running-in and the 
Gaussian distribution is always assumed. 

Therefore the main aspects of this thesis will be focused on the normal loading of lubricated 
metal to metal surfaces for the ‘pure’  rolling contact situation.  

Due to the fact that the change of the micro-geometry is dominant, many efforts 
have been made in order to study the behavior of the micro-geometry changes by applying 
a contact model. From the literature it can be concluded that there is no model which 
predicts the surface topography changes during running-in at roughness level 
deterministically. In the present work, a model which predicts the process roughness of real 
surfaces as running-in proceeds will be developed. It is clear that the contact model is 
crucial in developing such a model and therefore the asperity contact model as well as the 
asperity deformation model will be developed.     
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�: Schematic illustration of the proposed running-in model. 
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Fig. 2.12 shows schematically the proposed running-in model. In this model the initial 
(measured) surface geometry, z(x,y), will be used as an input for the elastic-plastic contact 
model and z’ (x,y) and z’ ’ (x,y) will be the output of surface geometries after applying the 
elastic-plastic contact model and wear model respectively. For calculating with the elastic-
plastic contact model the applied load, P, the material hardness, H, the elasticity modulus, 
E, et cetera are needed. The wear coefficient, k, and sliding distance, s, are necessary to 
calculate z’ ’ (x,y) with the wear model. z’ ’ (x,y) is now used as input for the elastic-plastic 
contact model until a near steady-state or process roughness is obtained. The surface 
topography changes during the running-in process for a certain number of cycles or sliding 
distances may then be predicted by using this model. 
 This thesis focuses on the changes of local micro-geometry in ‘pure’  rolling 
contacts; therefore the wear model in Fig. 2.12 is neglected. As a basis of the proposed 
running-in model, the elastic-plastic asperity contact model, which incorporates the elastic, 
elastoplastic and fully plastic contact situation, will be presented in the following chapter.   
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Chapter 3 
 
Elastic-plastic single asperity contact 
 
 
 
 
 
 
 
 
3.1. Introduction 
 
When two engineering surfaces are pressed together there will always be some contact 
deformation. Depending on the scale considered, this contact deformation can be 
categorized as macro-contact or micro-contact. The contact between a heavily loaded roller 
and the inner and outer race ways in a rolling-element bearing, for example, can be 
analyzed as a macroscopic contact. 
 Most engineering surfaces are rough on micro-scale. High points or micro-
protrusions, usually called asperities, exist on all engineering solid surfaces, see Fig. 3.1. In 
non-lubricated or boundary lubrication systems, when such surfaces are loaded against each 
other, the actual contact takes place at these asperities. The real contact area is the sum of 
the areas of the contacting asperities, therefore, the ratio between the real contact area and 
the apparent (nominal) contact area will be small. During the contact of two surfaces, 
contact will initially occur at a limited amount of asperities to support the normal load. 
aaaaa 
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The number of asperities in contact becomes larger as the normal load is increased. 
Deformation occurs in the region of contacts spots, establishing stresses which oppose the 
applied load. Depending on the load carried by the asperities and its mechanical properties, 
the asperities may deform elastic, elastic-plastic or fully plastic. The local stresses at the 
contact spots are much higher than the nominal stresses. Therefore local plastic deformation 
is usually found in the contact of two rough surfaces. The asperities on the solid bodies are 
sometimes considered to be spherically shaped with different sizes so that the contact of 
two surfaces can be reduced to the study of an array of spherical contacts deforming at their 
tips [1].        
 In the study of friction, wear and lubrication, knowledge about the deformation 
state of the surface asperities becomes very important. Understanding the relationship 
between local contact properties and surface topography can lead to the specification of 
optimized surface topography and manufacturing processes with respect to the functional 
task of the surface. Accurate modeling and study of the deformation behavior of contacting 
asperities are important on both micro and macro scale. Understanding the contact 
mechanics, the mechanism of friction, wear, lubrication, frictional heating and electrical 
contact resistance, et cetera rely upon the study of asperity contact. Furthermore, the 
elastic-plastic asperity contact model can be applied to predict the behavior of powder 
compaction [2]. In attempting to predict the deformation behavior of the contacting bodies, 
a developed elastic-plastic asperity based contact model is presented in this chapter. This 
developed asperity contact model can be applied to both macroscopic geometry and 
microscopic contacts. At first, overview of the elastic, fully plastic and elastic-plastic 
contact models published in literature are given in Section 3.2, Section 3.3 and Section 3.4, 
respectively. In order to verify the proposed models, an experimental investigation was 
done and it is presented in Section 3.5. In Section 3.6, a new developed elastic-plastic 
asperity contact model which incorporates the purely elastic, elastic-plastic and fully plastic 
regime is derived. The next section deals with the unloading contact of asperities, and 
finally concluding remarks are presented at the end of the chapter.      
 
 
3.2 Elastic contact 
 
Modeling the contact between surfaces based on the asperity approach was pioneered by 
Greenwood and Williamson (GW model) in 1966 [3]. The contact between a plane and a 
nominally flat surface covered with a large number of asperities, which, at least near their 
summits, are spherical, was considered. In their analysis the following assumptions were 
used:  

1. The asperity distribution is isotropic. 
2. All asperities are spherical near their summits. 
3. Asperity summits have a uniform radius R, but their heights vary randomly. 
4. The interactions among contacting asperities are neglected. 
5. Only the asperities deform during the contact and there is no bulk deformation. 

Analysis of the contact of two curved bodies can be reduced to the analysis of a single 
asperity contact with a rigid smooth flat as is schematically shown in Fig. 3.2. In this case, 
the interference ω is an important variable which measures the extent of asperity 
deformation. The contact variables, such as contact pressure and contact area of the asperity 
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��������	�: Contact of a single asperity with a rigid smooth flat. 
 
will be derived in terms of this interference. Three modes of deformation: elastic, elastic-
plastic and fully plastic will be introduced as ω increases. 

When ω is sufficiently small or a low load is applied, the asperity deforms 
elastically. In this range the deformations involved are reversible: if the load between the 
contacting asperities is removed they return to their original shape. Analysis of elastic 
contact is according to Hertz [4] and such contact is referred to as Hertzian contact. 
Hertzian analysis is based on the following assumptions: (1) the surfaces are continuous, 
smooth and non-conforming; (2) the strains are small; (3) each solid can be considered as 
an elastic half-space in the proximity of the contact region; and (4) the surfaces are 
frictionless. For the elastic contact situation, the contact area Ae, the contact load Pe and the 
mean contact pressure pe according to the Hertz theory are:  
      

ωπRAe =  (3.1) 
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where the effective or composite curvature is: 
 

21

111
RRR

+=  (3.4)      

 
and the effective modulus is: 

 

2

2
2

1

2
1 111

E
v

E
v

E
−+−=  (3.5)      

ω1 
ω2 ω 

Rigid, smooth flat 

Deformable sphere 

R 



 

 

34 

The parameters R, E and v are the reduced radius, Young’ s modulus of elasticity and the 
Poisson’ s ratio, respectively; subscripts 1 and 2 denote the two bodies in contact. 
 It was shown by Tabor [5] that initial yield occurs when the maximum Hertz 
contact pressure reaches pm = 0.6H, or, the average contact pressure pe = 0.4H where H is 
the hardness of the softer material in contact. For a more general representation Chang, 
Etsion and Bogy (CEB model) [6] correlate the maximum contact pressure at the point of 
initial yielding with the hardness by: 

 
KHpm =  (3.6) 

 
where K is the maximum contact pressure factor. The maximum contact pressure is equal to 
1.5pe so that by substituting this relation and Eq. (3.6) into Eq. (3.3) yields the critical 
interference ω1-CEB at the inception of plastic deformation:  
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 A similar approach was used by Zhao, Maietta and Chang (ZMC model) [7] to 
derive the critical interference based on the mean contact pressure instead of the maximum 
contact pressure. A constant k was introduced as the mean contact pressure factor. The 
critical interference ω1-ZMC according to ZMC is: 
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 Kogut and Etsion (KE model) [8] used the K value from [9] (see Appendix A) and 
the critical interference ω1-KE is defined by: 
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where  
 

vK KE 41.0454.0 +=  (3.10) 
 
v and H are the Poisson’ s ratio and the hardness of the material which yields first 
respectively.  
 Recently, Jackson and Green (JG model) [10] derived the critical interference 
based on the von Mises criteria for stresses, ω1-JG, (see Appendix A) as: 
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where  
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)736.0exp(295.1 vC =  (3.12) 
 
and Y is the yield strength of the softer material. 
      
 
3.3 Fully plastic contact 
 
If the load of the contacting asperities is increased significantly, such that the deformations 
become irreversible, the contact operates in the fully plastic contact regime. The basic 
plastic contact model, which is known as the profilometric model or surface micro-
geometry model, was introduced in 1933 by Abbott and Firestone (AF model) [11]. In this 
model the plastic contact area AAF of a rough surface against a rigid smooth flat is assumed 
to be equal to the intersection of the flat with the original undeformed profile of the 
asperity: 
 

ωπRAAF 2=  (3.13) 
 
The mean pressure over the contact area is the flow pressure or the indentation hardness H 
and remains constant so that the contact load PAF is equal to the contact area multiplied by 
the mean contact pressure, or: 
 

 HRPAF ωπ2=  (3.14) 
 
 CEB [6] proposed an elastic-plastic micro-contact model on the basis of the 
volume conservation of plastically deformed asperities. The CEB model assumes that the 
mean contact pressure in the fully plastic contact regime is equal to KH instead of H as used 
in the AF model. Hence, the plastic contact area ACEB according to the CEB model is: 
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and the plastic contact load PCEB is: 
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Another fully plastic model has been presented recently by Jackson and Green [10]. 
Because this model incorporate expressions from elastic-plastic to fully plastic contact 
regime the exploration of this model will be discussed further in the next section.   
 
 
3.4 Elastic-plastic contact 
 
The elastic-plastic contact regime is defined as the regime in which, due to the contact 
loading conditions, the deformations of the contacting asperities stay in between the pure 
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elastic and fully plastic deformation mode. Analysis of Johnson [12] shows that for the 
indentation of a sphere on a plane, the contact load increases about 360 times from the point 
of initial yielding to the fully plastic regime, or P/Pc � 360 where Pc is the load at which 
initial yield occurs. Based on the analysis of plastic spherical indentation, Francis [13] 
found that the fully plastic regime starts when the contact area is about 113 times the 
contact area at which first yield occurs, or A/Ac � 113. These analyses suggest that the 
elastic-plastic or elastoplastic regime, the transition regime from the fully elastic to the fully 
plastic, is extensive and cannot be neglected. This is the shortcoming of the CEB model in 
which the elastic-plastic regime is neglected. 

Zhao et al. [7] introduced the ZMC model and defined the second transition from 
the elastic-plastic to the fully plastic contact regime in terms of the contact interference ω, 
namely ω2-ZMC which is defined by: 
 

ZMCZMC −− = 12 54ωω  (3.17) 
 
The mean contact pressure in the elastic-plastic regime was: 
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where H is the hardness of the softer material, k is the hardness coefficient, ω1-ZMC is the 
first transition as defined by Eq. (3.8) and ω2-ZMC is the second transition as defined in Eq. 
(3.17). Based on the already-known formulation of the contact area in the elastic and fully 
plastic contact regime as was introduced by Hertz and the AF model, respectively, ZMC 
derived the contact area AZMC in the elastic-plastic regime. In order to smooth the contact 
area transition from Eq. (3.1) to Eq. (3.13) a cubic polynomial was used which lead to:     
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The elastic-plastic contact load PZMC is expressed simply by multiplication of the mean 
contact pressure and the contact area as: 

 
ZMCZMCZMC ApP =  (3.20) 

 
 Vu-Quoc et al. [14] studied the elastic-plastic contact of two identical spheres, 
which by symmetry is equivalent to that of one sphere in contact with a frictionless rigid 
plane by finite element method (FEM) calculations. However, their analysis is restricted to 
the contact situation where the mean contact pressure never exceeded 2.3 times the yield 
strength of the material. KE [8] employed similar FEM calculations covering from the 
elastic to the inception of the fully plastic contact regime of a sphere in contact with a rigid 
flat. In the KE model the second transition from the elastic-plastic to the fully plastic 
regime ω2-KE was proposed as: 
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KEKE −− = 12 110ωω   (3.21) 
 
According to this model the mean contact pressure pKE in the elastic-plastic regime is 
obtained by applying curve fitting from the FEM results and is expressed as follows: 
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The dimensionless elastic-plastic contact area and contact load was derived empirically by 
using the same method, i.e. FEM calculations. Results are expressed in Eqs. (3.23) and 
(3.24) respectively:    
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where Ac-KE is the contact area according to Eq. (3.1) and Pc-KE is the corresponding contact 
load, Eq. (3.2), at ω = ω1-KE. The KE model is not restricted to specific material or geometry 
and applicable as a general solution.  
 Jackson and Green [10] also used FEM calculations to study the elastic-plastic 
contact of a hemispherical body against a rigid flat. Interestingly, a continuous fitting 
function was found to capture the whole way from the purely elastic to the fully plastic 
conditions, whereas in the KE model there are discontinuities. In contradiction to the KE 
model, the JG model accounts for the geometry and material effects. It was stated that the 
most notable effect is that the predicted hardness is not a material constant as suggested by 
Tabor [5]; the hardness changes with the evolving contact geometry and the material 
properties. The analysis of the JG model surpasses the KE model deeply into the fully 
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plastic regime and is valid until a/R = 0.412, where a is the contact radius and R is the 
undeformed radius of the sphere. Regarding to tribological applications this range is 
acceptable. The contact area and contact load from the pure elastic to the fully plastic 
contact state are formulated empirically in the JG model. The contact area, AJG, is defined 
by: 
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In Eq. (3.25) Ac-JG is the critical contact area according to Eq. (3.1) at ω = ω1-JG where ω1-JG 
is the critical interference as was defined in Eq. (3.11). The contact load is defined by: 
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and the other parameters were defined as was discussed earlier.    

Summarizing, there are three regimes of deformation in the contact between 
asperities, namely, pure elastic, fully plastic and elastoplastic or elastic-plastic. The analysis 
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of Hertz [4] is well adopted and widely used by many researchers for the elastic contact 
case. However, the analysis of the fully plastic as well as the elastic-plastic regime is still in 
progress. Many investigations have been devoted to predict their behavior and most of them 
are theoretically based. In order to verify the proposed models as were mentioned 
previously, experimental investigation is needed. The behavior of the mean contact 
pressure, the contact area and the contact load will be explored experimentally in the next 
section. The mean contact pressure is determined simply by dividing the contact load by the 
contact area. Some models have expressed the mean contact pressure explicitly, however, 
in the KE model there is a difference between the mean contact pressure equation, Eq. 
(3.22), and the contact load, Eq. (3.24), divided by contact area, Eq. (3.23), as can be seen 
in Fig. 3.3. In the following contact analyses the latter is used.   
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��������	�: The difference in mean contact pressure of the KE model. 
   
 
3.5 Experiment 
 
3.5.1 Fully plastic contact experiment 
 
Experiments were performed on a pin-on-disk machine. A photographical impression of the 
pin-on-disk machine can be seen in Appendix D. The flat specimen (SiC ceramic) was 
firmly mounted on a disk and was held statically to apply simple normal loading. The pin of 
the tester was replaced by a sphere specimen holder. The holder was made from steel and 
aa 
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��������	�: Setup of the asperity normal indentation. 
 
was designed in such a way that the hemispherical form is maintained as shown in Fig. 3.4. 
The maximal load which could be applied to this setup was 600 N. 
 
 
3.5.1.1 Specimens 
 
Copper spheres (H = 1.2 GPa, E = 120 GPa and v = 0.35) with a diameter of 3 mm were 
used as specimens to perform the experiments. The hard flat specimen used was a SiC 
ceramic (H = 28 GPa, E = 430 GPa and v = 0.17). The copper specimens were as-received 
without annealing and having a center line average roughness Ra of about 0.15 µm. The 
average roughness of the flat specimen was 0.09 µm. 
 Most of the proposed asperity contact models assume an elastic perfectly plastic 
(no-strain hardening) material behaviour, therefore the same material properties were used 
in this experiment. To be sure that there is no strain hardening effect of the copper spheres 
used, hardness measurements were done before and after a compression test. The Vicker’ s 
hardness before compression was 1.15 GPa and after compression at a/R = 0.3 was 1.2 GPa 
where a is the contact radius and R is the initial radius of the Copper sphere. This shows 
that the specimens used did not show a strain hardening effect. 

In order to get more accurate results experiments were also performed with 
another material. Aluminium spheres (H = 0.28 GPa, E = 75.2 GPa, v = 0.345) with a 
diameter of 6 mm were used and the hard flat specimen used was SiC. The results of the 
aluminium experiments, see Appendix B, are similar to the results of the copper specimens, 
therefore in the following section the analysis is done for copper only.  
 
 
3.5.1.2 Matching and stitching 
 
In most situations it is not possible to get an accurate or detailed image of a complete cross 
section of the contact area. For an accurate image of the cross section a high lateral 
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resolution is needed and as a result only small areas can be measured. A new measuring 
technique has been developed to overcome this problem (see Appendix C).  

The developed contact area from the plastic compression of the sphere is wider 
than one single measurement of the optical profiler. Therefore, a matching and stitching 
procedure is needed to get the measurement results more precisely.   
 
 
3.5.1.3 Experimental details 
 
Before doing any tests, the spherical and flat specimens were cleaned with acetone and 
dried in air. To reduce the effect of friction, the contact region was lubricated. The load was 
applied to the sphere specimen for 30 seconds and then removed. Prior to measuring the 
fully plastic contact area, again the sphere was cleaned and dried. 

An optical interference microscope was used to measure the plastic contact area. 
In this step the matching and stitching procedure was employed. A special holder, by which 
one is able to rotate and translate the sphere specimen, was designed to make the matching 
and stitching procedure easier. After taking all the images, the matching and stitching 
calculation was done separately by a personal computer. It must be noted that to be able to 
compare the change of the sphere accurately before and after loading, this measurement 
procedure has to be conducted for the undeformed sphere as well.  
 
 
3.5.1.4 Experimental results 
 
As mentioned previously, to obtain results of a single experiment, several steps must be 
followed. Eleven copper sphere specimens were used to perform the tests. Figure 3.5 shows 
a typical matching and stitching result of the plastic deformation of a sphere after 
compression. Five images have been matched and stitched to cover the total track along the 
diameter of the plastic contact area at P = 490 N. According to the JG model, the 
dimensionless normal load in this case was P/Pc-JG = 1923, so far into the fully plastic 
regime. As can be seen in Fig. 3.5(a), the matching and stitching of the images results into 
an almost straight total image (no zig-zag but in line images) which implies that the 
translation and rotation specimen holder table works very well. Missing data points were 
found in the images at the start and at the end of the contact region. This is caused by bad 
reflection of the surfaces as can be seen more clearly in the profile plot in Fig. 3.5(b). At the 
edge of the contact, the sudden change of the geometry results in a high slope.  

The experimental results of the plastic contact area as a function of the contact 
interference, along with the theoretical model predictions of AF, CEB and JG, are presented 
in Fig. 3.6. Here, the plastic contact area was measured by measuring the contact radius 
from the plastic deformation trace as shown in Fig. 3.5(b). To determine the plastic 
interference, the maximum difference between the ‘before’  and ‘after’  compression profile 
was measured. Based on the deformed profile the undeformed (before) profile was 
calculated by the already-known sphere radius and two points in the profile references, 
namely the first and the end images. As can be seen, the experimental results agree well to 
the AF and CEB model. According to Eq. (3.15) for a very small ωc-CEB/ω (very high load) 
the AF and CEB model almost coincide. The measured plastic contact area is almost equal 
to 2πRω as predicted by the AF model. The experimental results (the dashed line represents 
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the best fit of the experimental data) show a slightly higher contact area as a function of the 
interference than predicted by the AF model. This difference is caused by the measurement 
method as described before. The plastic deformation is not as perfect as a truncation by a 
rigid flat, but there is a slight crown at the centre of the contact, as can be observed in Fig. 
3.5(b). The same phenomena have also been shown by the work of Johnson [15]. The 
crown is symmetrical around the centre indicating that the pressure distribution was also 
symmetrical. The JG model predicts a smaller contact area than that of the AF and the CEB 
model for low values of the interference (low loads) and the contact area increases more 
gradually as the interference (load) increases compared to the AF and the CEB model. The 
deviation of the JG model to the AF and the CEB model is larger for high loads.   
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(b) 
��������	: Plastic deformed copper sphere, R = 1.5 mm and P = 490 N. Deformed track 

along the diameter after matching and stitching of 5 images (a) and its A-A profile (b). 
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��������	�: Plastic contact area vs interference. � experimental data. 
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��������	�: Non-dimensional mean contact pressure plotted against the non-dimensional 
contact radius a/R. � experimental data. 
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The behavior of the mean contact pressure as a function of the non-dimensional 
plastic contact radius is plotted in Fig. 3.7. It shows that for all the loading cases the mean 
contact pressure remains constant at a value of about 0.75H. The present observations can 
be compared to previously published work. The work of Johnson [15] for instance, studied 
the deformation of the contact between two equal work-hardened copper spheres (radius 
63.5 mm). Results showed that the mean contact pressure in the fully plastic regime is 
constant for about 0.79H. The experimental results of Chaudhri [16] showed a constant 
value of the mean contact pressure for about 0.68H in the fully plastic regime in the case of 
the indentation of a copper sphere (radius 1.5 mm) against a hard sapphire flat. The 
comparison between these investigations [15, 16] and the proposed models can be seen in 
detail in Appendix B. These measurements compare very well with those made in the 
present research of this thesis. 
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��������	�: Mean contact pressure vs contact area. � experimental data. 
 

The non-dimensional mean contact pressures of the present experimental results, 
however, are in between the values predicted by the AF model and the CEB model. A more 
quantitative comparison between the experimental and predicted mean contact pressure as a 
function of the contact area of the available models based on the experimental conditions as 
used in the present experiment is presented in Fig. 3.8. As can be seen, the theoretical 
model of JG predicts a higher mean contact pressure for the lower contact area (lower load) 
and underestimates the mean contact pressure for the higher contact area (higher load) 
region. The present experiment shows an almost constant mean contact pressure for the 
whole measured contact area. According to Tabor [5], as a first approximation, the fully 
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plastic yielding of the indentation of a hard sphere against a deformable half-space occurs 
when the mean contact pressure p 

 
HccYp h==  (3.29) 

 
where c is nearly a constant and has a value of about 3 and ch is a hardness constant. If it is 
assumed that the hardness is equal to 3 times the yield strength Y then ch has a value of 
about 1. Interestingly, the AF model predicts fairly well the experimental results when the 
aa 
 
 
 
 
 
 
 
 
 
 
 
 
                                                (a)                                                         (b) 
 
��������	�: Behavior of a hard sphere indenting a deformable half-space (a) and a hard 

flat indenting a deformable sphere (b).  
 
mean contact pressure is equal to 0.75H (shown by the dashed line) or the ch value of Eq. 
(3.29) is 0.75. This contradicts the most widely used value for the fully plastic contact 
regime i.e. the mean contact pressure is simply equal to its hardness value or ch = 1. 
Indentation experiments by Tabor [5] for instance, used a hard spherical indenter against a 
deformable half-space but in the present experiment a deformable sphere is indented by a 
hard flat. Intuitively, for a very high load these two cases will pronounce a different 
behavior with respect to the deformation as schematically shown in Fig. 3.9. In the first 
case the displaced material in the indented half-space is confined by the elastic bulk of the 
half-space and the hard spherical indenter. This situation will produce a higher mean 
contact pressure so increases the coefficient value ch in Eq. (3.29). But in the second case 
the displaced material of the deformable sphere is free to expand radially in the edge of the 
contact and the contact radius increases as the load increases.    

Figure 3.10 presents the results of the contact area as a function of the normal 
contact load. Again, the present experimental results lie along the straight line for p = 
0.75H (dashed line) of the AF model. The CEB model overestimates the contact area as a 
function of the contact load which contradicts to Fig. 3.6 when it is plotted as a function of 
the contact interference. This is caused by the mean contact pressure predicted by the CEB 
model which is lower than the actual one. The same phenomenon also occurs with the AF 
model where the mean contact pressure is predicted to be higher. Depending on the material 
properties, the JG model predicts the contact area as a function of the load differently. 
aaaaaa 
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��������	
�: Contact area as a function of normal load. 
 �  experimental data.  

 
However, the JG model tends to overestimate the contact area as the load increases. The 
difference will be more pronounced for higher loads. This overestimation is caused by the 
decrease of the mean contact pressure as predicted by the model.        
 
 
3.5.2 Elastic-plastic contact experiment 
 
In this section the experimental elastic-plastic contact data of Tabor [5] and Chaudhri [17] 
is used. Tabor’ s experiment was performed by indenting a work-hardened mild steel (Y = 
0.75 GPa, E = 200 GPa and v = 0.33) by a hard spherical indenter of 10 mm diameter. The 
indentation experiment of Chaudhri used phosphor-bronze (H = 2.72 GPa, E = 115 GPa and 
v = 0.35) and brass (H = 1.8 GPa, E = 115 GPa and v = 0.35) spheres of 3.175 mm diameter 
and a sapphire (H = 190 GPa, E = 430 GPa and v = 0.26) plate. In Chaudhri’ s experiment, 
the contact area was measured directly. The sphere was compressed between a load cell and 
a transparent sapphire plate so that the contact area could be measured directly by a 
microscope [18]. A schematic diagram of this method can be seen in Appendix B.   

Figure 3.11 shows the indentation pressure under elastic, elastic-plastic and fully 
plastic conditions which is correlated on a non-dimensional plot of p/H as a function of 
Ea/HR where p, H, E, a and R are the variables as was mentioned previously. With a hard 
spherical indenter of Tabor, the mean contact pressure starts to deviate from the elastic 
curve (Hertz) at a value of p � 0.4H at Ea/HR � 0.92 and gradually rises until it reaches the 
value of about H at Ea/HR � 14.3. The plastic compression of deformable brass sphere by a 
hard flat of Chaudhri [17], shows the same phenomena as the data fit to the experimental 
data of Tabor. However, for the case of a phosphor-bronze sphere indented by a hard flat, 
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different results are shown. Up to the first yield points (Ea/HR � 0.92) the mean contact 
pressure stays the same, but as the load increases, the data starts to deviate from Tabor’ s 
results. Different from Tabor’ s results the maximum contact pressure which is reached in 
this test is about 0.79H.  
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: Non-dimensional mean contact pressure vs non-dimensional contact radius. 
Experiments: � steel, Tabor [5]; � phosphor-bronze and � brass, Chaudhri [17].  
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��������	
�: Non-dimensional mean contact pressure vs non-dimensional contact radius. 
Symbols have the same meaning as in Figure 3.11. 
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Interestingly, when the measured mean contact pressure Hm (p = Hm) value in the 
fully plastic regime is used for the non-dimensional value, instead of the hardness H, all the 
experimental data spreads closely in one line as is shown in Fig. 3.12. This suggests that the 
maximum contact pressure which can be reached for a deformable sphere against a hard flat 
is material dependent. Based on this, in the analysis of the elastic-plastic contact the 
maximum mean contact pressure will be used instead of the hardness which is most 
frequently used by the proposed elastic-plastic asperity contact models. 
 Comparison of the proposed elastic-plastic contact models with the experimental 
data of Phosphor-bronze of Chaudhri [17] is presented in Fig. 3.13 and 3.14. From Fig. 
3.13 it can be seen that the ZMC model predicts the mean contact pressure as a function of 
the contact area best among the other models. The KE model predicts p/Hm value better in 
the beginning of the elastic-regime but as the plasticity is more involved, the model starts to 
deviate from the experimental results. Since the JG model is based on the yield stress Y and 
the yield stress of the phosphor-bronze is not provided, an assumption is made. The yield 
stress of Hm/2.8 and Hm/3 are assumed. For the both assumed yield stress values, the JG 
model largely underestimates the mean contact pressure as a function of the contact area. 
The deviation from the experimental data becomes larger as the contact area increases. In 
addition, the effect of the assumed yield stress is very significant in predicting the mean 
contact pressure as can be seen from Fig. 3.13. 
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��������	
�: Non-dimensional mean contact pressure as a function of contact area.  
� experimental data of phosphor-bronze, Chaudhri [17]. 

 
 The experimental data reaches its maximum for the contact pressure quickly as the 
contact area increases. Analysis of these data suggests that the ZMC model can predict the 
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mean contact pressure better when the criteria of the onset of fully plasticity ω2-ZMC as 
defined in Eq. (3.17) is set lower. The criteria used by the ZMC model in determining ω2-

ZMC are based on the experimental data analysis of Johnson [12] where a deformable half-
space is indented by a hard sphere.             
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��������	
�: Contact area as a function of contact load. � experimental data of phosphor-
bronze, Chaudhri [17]. 

 
 

Figure 3.14 presents the calculated contact area from the proposed models as a 
function of the contact load. In this graph the difference of the model prediction is not clear 
for loads below 200 N. For loads higher than this value the difference is more pronounced 
and it can be seen that the ZMC model can predict very well. As it is expected the Hertz 
analysis dramatically underestimates the contact area as the load increases because the 
analysis is elastic. The KE model predicts a higher contact area than the experimental data 
for loads below about 1100 N but predicts a lower contact area for loads higher than this 
value. For the assumed yield stress values, the JG model overestimates the contact area for 
all loading cases.  

Another comparison of experimental data of brass by Chaudhri [17] and steel by 
Tabor [5] with the proposed modification on the elastic-plastic contact model, Eq. (3.29), 
can be seen in Appendix B. In Appendix B, the yield stress is assumed to be Hm/2.8 for the 
JG model. 
 As a summary, by modifying the mean contact pressure at the fully plastic contact 
regime as formulated in Eq. (3.29) the ZMC approach in the elastic-plastic contact regime 
and the AF approach in the fully plastic contact regime predict best among the other 



 

 

50 

models. Based on these analyses a new elastic-plastic contact model will be developed in 
the next section.     
 
 
3.6 A new developed elastic-plastic asperity contact model 
 
The surface textures of most of the engineering surfaces are oriented with the direction of 
the relative motion of cutting tools to the workpieces. Different processing methods will 
produce different asperity radii of curvature, and therefore different ellipticity ratios of the 
micro-contacts are formed. The profile of the asperities generally contains various 
curvatures for various directions. In accordance to these facts, several models have been 
proposed to extend the isotropic asperity contact model into an anisotropic asperity contact 
model. Horng [19], for instance, extended the CEB model and Jeng and Wang [20] 
extended the ZMC model for the elliptical contact situation.  
 Even though the results of McCool [21] showed that for anisotropy rough surfaces 
with a random distribution of asperity radii differ negligibly from those of the isotropic one, 
for the deterministic contact situation the ellipticity of the contact cannot be simplified, 
especially when studying the change of the micro-geometry. In this thesis the micro-
geometric change of the surface after unloading is the main topic. Therefore, the elliptical 
contact situation will be considered for the analysis.  
 
 
3.6.1 Elliptic elastic contact 
 
Figure 3.15 shows the general situation of the contact between two elastic bodies. 
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: Geometry of contraformal contact. 
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Eccentricity of the ellipse e is defined as: 
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where a and b denote the semi-minor and semi-major radius of the elliptic contact area. The 
mean effective radius Rm is represented as:  
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where Rx and Ry are the effective radii of curvature in principal x and y direction; subscripts 
1 and 2 indicate body 1 and body 2, respectively. 

From the theory of elasticity, the maximum contact pressure po, the semi-major 
contact ellipse radius b and the interference of an asperity ω can be written as [12]: 
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p is the mean contact pressure, P is the contact load, a is the semi-minor radius of the 
elliptic contact area, E is the effective elastic modulus as was defined in Eq. (3.5) and Rx 
and Ry are the effective radii of curvature as defined in Eq. (3.31). K(e) and E(e) are the 
complete elliptic integrals of the first and second kind, respectively: 
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The elastic contact area Ae and the contact load Pe can be expressed in terms of the contact 
interference ω by combining Eqs. (3.32), (3.33) and (3.34): 
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Eqs. (3.37) and (3.38) contain elliptical integrals, whose values must be found from tables. 
Approximations for the complete elliptic integrals have been introduced, for example, by 
Reussner [22] and Moes [23].  

According to [22, 23], the semi-minor radius of the contact area a, the semi-major 
radius of the contact area b and the elastic interference ω are defined as: 
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where α, β and γ, according to Moes [23], are 
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In Eqs. (3.42)-(3.44) κ, E(m) and K(m) are defined by: 
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where m = 1 – κ12 and the curvature ratio λ 
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Combining Eqs. (3.39), (3.40) and (3.41), the contact area and the contact load can be 
presented in terms of ω as: 
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The mean contact pressure pe is simply expressed in terms of ω by dividing Eq. (3.50) by 
Eq. (3.49): 
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Substituting Eq. (3.6) into Eq. (3.51) yields the critical interference ω1:  
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where Kv is a hardness coefficient related to the Poisson’ s ratio v as was defined in Eq. 
(3.10). Recently, [24] have derived Kv based on the von Mises shear strain energy criterion 
(see Appendix A) as: 
 

21943.03141.04645.0 vvKv ++=        (3.53) 
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However, the difference between Eq. (3.10) and Eq. (3.53) is small. 
 
 
3.6.2 Elliptic fully plastic contact 
 
Based on the experimental results of a deformable sphere in contact with a hard flat in the 
fully plastic contact regime, the mean contact pressure is not equal to the hardness but 
lower. For a more general representation the mean contact pressure in the fully plastic 
regime can be related to the hardness as: 
 

Hcp hp =        (3.54) 
 
where ch is the hardness coefficient for the fully plastic contact regime. 
 It was shown in Fig. 3.6 that in the fully plastic contact regime the contact area is 
simply a truncation of the undeformed asperity geometry as was postulated by [11]. For the 
elliptical contact situation this can be expressed as: 
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Rearranging and substituting Eq. (3.55) into A = πab yields the contact area in the fully 
plastic Ap:  
 

 ωπ yxp RRA 2=        (3.56) 

 
The contact load Pp is equal to the contact area multiplied by the mean contact pressure, or 
 

HcRRP hyxp πω2=        (3.57) 

 
The solid expression for the onset of fully plastic interference ω2 is not known, therefore it 
is estimated. A simple analysis is done based on the contact load. At ω = ω2, the contact 
load is equal to Eq. (3.57). At the same time, the contact load had it been elastic as would 
be equal to Eq. (3.50). Therefore, the following inequality can be established: 
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Eq. (3.58) can be rewritten as: 
 

2

22
2

22
2

2 2
3

2 �
�

�

�

�
�

�

�

�
�
�

�
�
�
�

�
>

v

h

m

yx
v

m

K
c

R

RR
HK

E
R

αβ
γγβαπω        (3.59) 

 



 

 

55

Substituting Eq. (3.42) to (3.48) and Eq. (3.52) into Eq. (3.59) yields: 
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Fig. 3.16 depicts the plot of Eq. (3.60) in terms of λ. The onset of full plasticity based on 
this equation is strongly affected by the plastic hardness coefficient ch. For the same value 
of Kv = 0.6, the onset of full plasticity for ch = 1 is about 25 and for ch = 0.8 this is about 16 
for λ in the range 0.75 to 1. 
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�: Onset of full plasticity as a function of the ellipticity ratio λ  
of Equation (3.60). 

 
 The minimum value of ω2 may also be further estimated using experimental 
results. The fully plastic regime of a half-space indented by a rigid sphere according to 
Francis [13], starts at A/Ac = 113.2 and according to Johnson [12] full plasticity starts at 
Ea/YR � 40 or P/Pc � 360. Based on the experimental results of Chaudhri et al. [17] and 
Tabor [5] for the contact problem of a deformable sphere and a rigid flat, the fully plastic 
contact regime (as indicated by a constant mean contact pressure) starts at A/Ac � 40 for 
phosphor-bronze, 90 for brass and 160 for steel according to the JG model. Or in general: 
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Substituting Eqs. (3.49) and (3.56) into Eq. (3.61) and rearranging results: 
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Using Eqs. (3.42) - (3.48) and substituting into Eq. (3.62) yields: 
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Fig. 3.17 shows the plot of the onset of fully plastic contact as a function of the ellipticity 
ratio λ based on Eq. (3.63). It can be seen that for the range of λ of 0.55 to 1, ω2/ω1 is 
almost constant at a value of about 45 for cA = 90. For the next analysis this value will be 
used. 
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of Equation (3.63). 

 
 
3.6.3 Elliptic elastic-plastic contact 
 
Since the modified ZMC model predicts the contact behavior in the elastic-plastic regime 
best among the other contact models, the approaches used by the ZMC model will be used 
to analyze the elliptic elastic-plastic contact problem. 
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 Based on a statistical analysis of spherical indentations, Francis [13] presented the 
dependence of the mean contact pressure pep on ω for the elastic-plastic contact situation, 
which may be analogously characterized by a logarithmic function, as follows:  
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where a1 and a2 are two constants to be determined, and r is the circular contact radius. 
Since the area of elliptical contact A = πab, the elliptical contact radius can be represented 
as (ab)1/2. Substituting this relation into Eq. (3.64) results: 
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At the critical interference ω1, Eq. (3.65) can be expressed in the form:  
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and at the inception of full plasticity ω2: 
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By simultaneously solving Eqs. (3.66) and (3.67), the parameters a1 and a2 can be 
determined in terms of the properties of the contact: 
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Substituting Eqs. (3.68) and (3.69) into (3.65) gives the mean contact pressure in the 
elastic-plastic deformation region as follows: 
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Zhao et al. [7] proposed a relation of the elastic-plastic contact area as a function 
of ω. The relation was modeled by using a polynomial expression to join the expression of 
the contact area at ω = ω1 and ω = ω2 smoothly. A ‘template’  cubic polynomial function is 
defined as: 

 
32 23 xxy −=        (3.71) 

 
By this function all four boundary conditions: Aep = Ae, dAep/dω = dAe/dω at ω = ω1 and Aep 
= Ap, dAep/dω = dAp/dω at ω = ω2 are satisfied. The transformation involves translating and 
scaling ω so that ω = ω1 and ω = ω2 correspond to x = 0 and x = 1, respectively, where: 
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The expression of Aep after scaling is: 
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Substituting Eqs. (3.49) and (3.56) into Eq. (3.73) gives the relation between the elastic-
plastic contact area Aep in terms of contact interference ω as: 
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The elastic-plastic contact load Pep is defined using Eqs. (3.70) and (3.74), Pep = pepAep, as: 
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Examples of the application of the developed new elliptic elastic-plastic contact 

model are presented in Fig 3.18 and 3.19 in which the non-dimensional mean contact 
pressure, p/(chH), is plotted as a function of the non-dimensional contact area, A/Ac, and the 
non-dimensional contact area as a function of the non-dimensional contact load, P/Pc, 
respectively. It can be seen from the figures that the proposed elastic-plastic contact model 
fits very well with the experimental results of Chaudhri [17]. In these cases, the coefficient 
of hardness ch = 0.805 and the contact area constant cA = 40 for phosphor-bronze and ch = 
0.967 and cA = 90 for brass. This suggests that those constants are material dependent. 
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�: Non-dimensional mean contact pressure vs non-dimensional contact area. 
Experiments: (a) � phosphor-bronze and (b) � brass of Chaudhri [17].   
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�: Non-dimensional contact area vs non-dimensional contact load. 
Experiments: (a) � phosphor-bronze and (b) � brass of Chaudhri [17].  
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3.7 Unloading of elastic-plastic asperity contact model 
 
The same as for the loading of an elastic-plastic contacting asperity, the unloading does 
have three different contact regimes i.e. elastic, elastic-plastic and fully plastic. The plastic 
deformation results in a permanent change of the asperity which in fact is the main issue of 
this study. Therefore, attention will be paid to the completed unloading process rather than 
studying all the unloading stages itself. The study will focus on the residual contact 
interference and the residual contact area. Due to the fact that there is not much literature 
concerning this topic, the unloading contact behavior will be developed. 
  
  
3.7.1 Elastic contact unloading 
 
It is widely accepted that the elastic unloading process is assumed to follow the Hertzian 
analysis. Therefore, in the elastic contact regime there is no difference between loading and 
unloading contact behavior. Consequently, the residual contact interference, ωue and the 
residual contact area Aue are: 
 

0=ueω  (3.76) 
 

0=ueA  (3.77) 
 
 
3.7.2 Fully plastic contact unloading 
 
In the fully plastic contact regime the elastic recovery is very small. This is also confirmed 
by the experimental results, see for example Fig. 3.5b. From this figure the elastic recovery 
interference is about 3% of the contact interference. Therefore, it is reasonable to assume 
that the elastic part is negligible in the fully plastic regime. Accordingly, all the contact 
parameters for the fully plastic contact loading can be used for the unloading analysis.  
 The residual contact interference, ωup and the residual contact area Aup in the fully 
plastic regime are: 
 

pup ωω =  (3.78) 
 

pup AA =  (3.79) 
 
where ωp and Ap are the contact interference and contact area in the fully plastic regime 
during loading, respectively.  
 Experimental results of the plastic deformation and plastic contact area, along with 
the model prediction of Eqs. (3.78) and (3.79), are presented in Fig. 3.20 and Fig. 3.21 as a 
function of the contact load. In these figures, since the contact pressure in the fully plastic 
regime depends on the constant ch, the contact load is normalized by the factor chPc where 
Pc is the contact load at ω = ω1. The same specimens as were used previously in Sub- 
aaaaaa 
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��������	��: Non-dimensional plastic deformation vs non-dimensional contact load in the 
fully plastic contact regime. Experimental results: � copper and � aluminium. 
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: Non-dimensional plastic contact area vs non-dimensional contact load in the 
fully plastic contact regime. Experimental results: � copper and � aluminium. 
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section 3.5.1 were used in the present experiments. The constant ch for copper is 0.75 and 
for aluminium is 0.71. A very good correlation is observed from these figures. The model 
predicts the plastic deformation and the plastic contact area accurately for both materials far 
into the fully plastic contact regime, P/(chPc) = 9450.     
 
 
3.7.3 Elastic-plastic contact unloading 
 
From the available literature about the unloading contact behaviour all of research was 
devoted to the elastic-plastic contact situation [14, 25 and 26]. Vu-Quoc [14, 25] proposed 
the plastic interference ωp-VQ and the plastic contact area Ap-VQ on the basis of FEM 
calculations as: 
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where ωmax, ae-max and Pmax are the contact interference, the contact area radius and the 
contact load, respectively, from which the unloading is started. CR and Ca are constants 
which are dependent on the asperity properties and PY is the load at the yield point. The 
model seems to be simple, however to determine the constants, extra effort is needed such 
as FEM calculations or experimental analysis. Furthermore, this model was applied for 
relatively low loads and for a certain material. As was shown by experimental results, the 
elastic part is reduced as the load increases, but from Eq. (3.80) by taking a constant value 
of CR, the elastic deformation increases quadratically as the contact area radius increases.   

Li et al. [26], also based on a FEM analysis, developed the unloading contact 
model for the contact of a rigid sphere with an elastic-perfectly plastic half-space and an 
elastic-perfectly plastic sphere with a rigid plane. In their model, the load-displacement 
relationship for the unloading situation is expressed by: 

  

�
�

�

	






�

�

�
�
�

�
�
�
�

�
−�

�
�

�
�
�
�

�
�
�

�
�
�

�−=
5.15.1

max
5.0

maxmax

ccYY R
R

P
P

P
P

ω
ω

ω
ω

 (3.82) 

 
where Pmax and ωmax are the maximum load and the corresponding maximum interference 
during the loading-unloading cycle, Rmax is the radius of curvature at the maximum load and 
PY is the load at the critical interference ωc. As can be seen in Eq. (3.82) it is difficult to 
analyze the unloading contact situation, i.e. for determining the Rmax. Compared to the Vu-
Quoc et al. model, this model reduces the number of the unknown constants. The residual 
or plastic deformation of the asperity ωp-Li can be obtained from Eq. (3.82) by substituting 
the value at the final loading, i.e. when P = 0: 
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Figure 3.22 shows the plot of loading a phosphor-bronze sphere [17], see Section 3.5.2, by 
the developed model of section 3.6 and the unloading process for Pmax at ω /ωc = 25 by Li et 
al. model as a function of the non-dimensional contact interference ω /ωc. Li et al. [26] 
suggest the value for Rmax to be 2.15R. It should be noted that this value depends on the load 
or interference. According to Johnson [12] the value of Rmax is 2R in the fully plastic contact 
regime when there is no pile-up and sinking in adjacent to the perimeter of the contact area 
and Rmax is R for the elastic contact situation. In order to obtain a more precise value for Rmax 
for the elastic-plastic unloading contact model, an experimental investigation should be 
conducted.  
 The present experimental work uses the same procedure as was mentioned in 
Section 3.5. In this case, two equal hardened steel spheres (H = 7.55 GPa, E = 210 GPa and 
v = 0.3) with a diameter of 20 mm were compressed in the Tensile Testing Machine (see 
Appendix D). A typical result after the unloading of such spheres is shown in Fig. 3.23. In 
this figure, a load of 77330 N was applied to the equal spheres in contact for about 30 
seconds and then removed. Compared to the results of Fig. 3.5b, the profile in this figure is 
much smoother. This is because the average roughness Ra value of the hardened steel 
sphere is about 0.01 µm whiles the Ra value in Fig. 3.5b is about 0.15 µm.    

Residual or plastic deformation is determined by fitting a curve along the 
experimental results which maintain the continuity from the elastic, elastic-plastic and fully 
plastic contact regimes. Two types of polynomial functions are employed for this method in 
the elastic-plastic contact regime. According to this, the plastic deformation ωuep in the 
elastic-plastic regime is expressed by: 
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(3.84) 

 
where ω1 and ω2 are the critical interference for the first yield and the critical interference 
for the fully plastic situation, respectively. The constant a1 = 23/1521, a2 = 46/1521, a3 = 
23/1521, b1 = 523/1248000, b2 = 4567/62400, b3 = 1039/390, b4 = 1532/39 and ab = 40ω1.   
Based on the experimental investigation of Johnson [12], the fully plastic contact regime is 
reached when P/Pc is about 360 to 400 for spherical asperities indentations. In the present 
analysis the value of P/Pc = 400 was used, or ω2 = 80ω1. 
 It is difficult to find the relation between the plastic contact area and the plastic 
deformation; however, as soon as there is plastic deformation as can be seen in Fig. 3.23, 
the plastic contact area formed is nearly the plastic contact area in the loading condition. 
Therefore, the plastic contact area Auep can be expressed as: 



 

 

65

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

90

100

Non−dimensional contact interference, ω/ωc [−]

N
on

−d
im

en
si

on
al

 m
ea

n 
co

nt
ac

t l
oa

d,
 P

/P
c [−

]

Loading−Hertz

Loading−Present model

Unloading−Li et al. [26]

Plastic deformation

 
 

��������	��: Non-dimensional load versus non-dimensional interference curves during 
loading-unloading of a sphere against a rigid flat. 
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two equal hardened steel spheres with a diameter of 20 mm at P = 77330 N, Ra = 0.01 µm. 
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epuep AA =  (3.85) 

 
where Aep is the contact area in the elastic-plastic regime during loading.  

Figure 3.24 shows the measured values obtained with the experiment described, 
along with the expression for the plastic deformation of Eq. (3.84). In these experiments, 
hardened steel, mild steel and aluminium were used. For the mild steel and aluminium ridge 
shaped asperities were used. The curvature of the ridge shaped asperities were determined 
based on the volume conservation method, see Chapter 4. As can be seen, the theoretical 
model (plastic deformation) predicts the trend of the experimental results very well. The 
plastic deformation starts from zero in the elastic contact regime and steadily grows as the 
load increases until there is almost no elastic recovery in the fully plastic regime. 
Conversely, the elastic recovery grows as the load increases from zero until it reaches a 
maximum value at a certain load and then decreases until almost zero in the fully plastic 
contact regime. 
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��������	��: Non-dimensional plastic deformation as a function of non-dimensional 

contact load in the elastic-plastic contact regime. Experimental results: � hardened steel, 
� mild steel (ridge) and � aluminium (ridge). 

 
 A comparison of the non-dimensional plastic contact area measured and predicted 
by Eq. (3.85) or Eq. (3.74) is shown in Fig. 3.25. The results are plotted against the non-
dimensional contact load P/(chPc). The theoretical model, as can be seen, predicts the 
remaining plastic contact area fairly well. The model overestimates the measurement results 
a little bit, however, when the degree of plasticity increases, the accuracy of the model 
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��������	�: Plastic contact area as a function of contact load in the elastic-plastic 
contact regime. � hardened steel, � mild steel (ridge) and � aluminium (ridge). 

 
prediction increases. The reason for the lower measured plastic contact area is that during 
unloading there is a small elastic recovery and as a consequence there is a decrease in the 
diameter of the contact area after unloading.    
 
 
3.8 Concluding remarks 
 
An elastic-plastic single asperity contact model has been studied in this chapter. The 
published elastic-plastic asperity contact models have been reviewed. In order to verify the 
proposed models from literature, experiments were conducted. From the experimental 
results it is concluded that there is no agreement between the measured and the theoretical 
predictions. Therefore, a new single asperity contact model has to be developed. 
 A new contact model has been developed by making use of the knowledge gained 
by the experimental investigations. To make it more general, the model is presented for the 
elliptical contact condition. Two constants have been introduced, ch the coefficient for the 
hardness in the fully plastic contact regime and cA the coefficient for the full plasticity 
contact area in determining the interference where the full plasticity begins. It was shown 
that the mean contact pressure in the fully plastic contact regime is lower than the hardness 
of the material as proposed by most of the asperity contact models. There is no significant 
difference in determining the critical interference from the elastic to the elastic-plastic 
contact regime (ω1) for all the proposed contact models; however, the difference in the 
transition from the elastic-plastic to the fully plastic contact regime (ω2) is very significant. 
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Experiments suggest that (ω2) depends on the asperity contact properties. In the fully plastic 
contact regime the contact area is simply a truncation of the asperities. 
 Since the change of the asperity geometry is the main topic in this thesis, the 
model is extended for the unloading condition. A simple expression for the unloading of the 
elastic-plastic asperity contact model has been developed. The unloading model predicts the 
plastic deformation and the plastic contact area.  
 In Chapter 4 the elastic-plastic single asperity contact model which has been 
developed (loading and unloading) is applied to the multi asperity contact situation.  
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Chapter 4 
 
Deterministic elastic-plastic multi asperity contact 
 
 
 
 
 
 
 
 
4.1. Introduction 
 
All engineering surfaces found in nature are observed to be rough at microscopic scale and 
never perfectly smooth. Irregularities or roughness of the solid surfaces can be formed by 
either of the following methods: fracture of solids; machining; thin-film deposition; and 
solidification of liquids [1]. The roughness often appears randomly and disorderly and does 
not seem to follow any particular structural pattern which contributes to the complexity of 
the surface geometrical structure. The effect of roughness is very significant in studying 
contact mechanics, friction, wear, lubrication, electrical contact resistance, noise and 
vibration, et cetera [2].   

Several attempts have been made to model the rough surfaces, for instance an 
asperity based model as was presented in the previous chapter, in order to study the effect 
of the roughness for a certain application further. In this chapter the developed elastic-
plastic single asperity contact model in Chapter 3 is extended to study the behavior of the 
elastic-plastic rough surface contact deterministically. In this case, a rough surface is 
represented by an array of asperities (multi asperity approach). The roughness or asperity 
deformation without bulk deformation is a point of interest in this thesis (running-in); 
therefore, this will be used as a boundary of the operating contact condition. However, there 
is no criterion available by which one is able to distinguish in which condition the 
contacting surfaces will deform: in the surface asperities only, in the bulk only (asperity 
persistence) or in a combination of asperity and bulk deformation. For this purpose, a 
criterion is proposed theoretically and is presented in Section 4.2. In Section 4.3 the 
experimental validation of the proposed criterion in Section 4.2 is given. By having the 
criteria to determine the contact deformation of rough surfaces on asperity level only, 
analysis of the contact of rough surfaces deterministically can be performed readily. 
Deterministic contact of surfaces is explored in Section 4.4. In this section, the modeling of 
contacts between rough surfaces published in literature is reviewed and a new developed 
rough surface contact model is presented. Experimental validation of the rough surface 
contact model is given in Section 4.5. Finally, concluding remarks are given in Section 4.6.        
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4.2 Surface asperities and bulk deformation 
  
When two surfaces are loaded against each other, contact will initially occur at a limited 
amount of asperities of different shapes and sizes to support the normal load. The number 
of the contacting asperities becomes larger as the normal load is increased, as well as the 
contact deformation. If the deformation is in the same order as the topography of the 
surfaces, the response to the normal load may be strongly related to the height and size of 
the asperities. An elastic-plastic material plasticity may be initiated either in the surface 
asperities or in the bulk depending on the contact condition. This problem is of particular 
interest to tribologists and engineers with respect to the functional properties of the devices. 
Or in another words, depending on the desired functional performance, the contacting 
surfaces condition may be designed. In this section, the study of the deformation behavior 
of the contacting surfaces will be presented. The study will focus on the contact of rough 
curved surfaces, since in practical engineering applications, this contact is most frequently 
observed, such as the contact of a ball on the race way of ball bearings, ball screws, ball 
joints, et cetera.  
 
 
4.2.1 Overview of the asperities and bulk deformation models 
 
In the Hertz theory [3], the contact of two elastic bodies is based on the assumption that 
their surfaces are topographically smooth. However, when roughness is present, the 
qualitative behavior is clear and there are two scales of size in such a problem [4]: (i) the 
bulk or nominal contact dimensions and elastic deformation according to the Hertz theory 
and (ii) the height and spatial distribution of the roughness or asperities. Quantitative study 
of this problem has been conducted by Greenwood and Tripp (GT model) [5] by analyzing 
the elastic contact of rough spheres. The analysis of [5] is based on the work of Greenwood 
and Williamson [6] where the rough surfaces are assumed to be covered with spherical 
asperities and the height of the asperities is represented by a well-defined statistical 
distribution function. Similar approaches have been used by Lo [7] to analyze the contact 
behaviour of two parallel rough cylinders. Different to the previous studies, Mikic and Roca 
[8] studied the contact problem of two rough spherical surfaces based on the plasticity 
theory. 

Most of the developed contact models are devoted to the calculation of the real 
contact area or load carrying capacity and the sub-surface stresses. The deformation 
behaviour of the contacting surfaces is rarely explored, especially during the unloading. 
Recently, Rajendrakumar and Biswas [9] have studied the deformation response of the 
contact between a two-dimensional rough surface and a smooth cylinder by using complex 
variable analysis. A map which can be used as a design guide for predicting the 
deformation responses – asperity, bulk or a combination between asperity and bulk 
deformation of the contacting surfaces, was constructed. However, the map was based upon 
a simple two-dimensional configuration of the contact problem and there is no experimental 
verification for the proposed model. The asperities were represented by simple uniformly 
spaced cylinders of the same radius and height.  
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4.2.2 Contact of rough curved surfaces 
 
In the case of the contact between a smooth sphere and a flat rough surface, true contact is 
not made continuously over the circular contact area envisaged by the Hertz theory, but 
through an archipelago of small discrete islands roughly clustered within a circular region.  
Therefore, true contact pressure is discontinuous, very high within the contact region and 
falling to zero in between the contact islands. In the present analysis the GT model is used 
for convenience.  

According to the GT model the asperities are assumed to have spherical caps of 
uniform radius β, whose heights above a mean datum have a statistical distribution φ(z), 
deform elastically and independently following the Hertzian theory. The contact load P 
required to compress an individual asperity by an amount of ωa is given by: 
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E is the effective elastic modulus as was defined in Eq. (3.5). If such a nominally flat rough 
surface is in contact with a smooth flat surface at a separation d, the effective pressure p 
between them is: 
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where ηs is the asperity density i.e. the number of asperity per unit area N/A0.  
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: Contact of a nominally flat rough surface with a smooth sphere,  
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The geometry of the contact of a rough surface with a smooth sphere is shown in a 

diagram in Fig. 4.1. A datum is taken at the mean level of the rough surface. For the sphere, 
the profile of the undeformed sphere relative to the datum is defined by: 
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When the contacting surfaces start to be compressed there will be deformations in the 
asperities ωa and a deformation of the bulk wb, hence the separation between the two 
surfaces is given by: 
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If the asperity deformation is assumed to be elastic, substituting of Eq. (4.4) into Eq. (4.2) 
yields the effective pressure at radius r as: 
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where zs is the height of the asperity summit above the datum. The bulk deformation wb is 
related to the effective pressure p(r) by the equations for the axi-symmetric deformation of 
an elastic half-space [4] and is written as: 
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where K is the first kind complete elliptical integral with argument k: 
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 By using iterative numerical techniques, Greenwood and Tripp [5] solved Eqs. 
(4.4), (4.5) and (4.6) to find the effective pressure distribution p(r). The solution depends 
upon two independent non-dimensional parameters α and µ: 
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where Rqs is the r.m.s. roughness of the summits, R is the radius of the sphere. E is the 
reduced elasticity modulus, P is the normal load, ηs is the number of asperity per unit area 
and β is the radius of the asperities. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
��������	�: Effective pressure distribution and effective contact area (solid line) of the 

contact of a nominally flat rough surface with a smooth sphere, after [4] and [5].  
Dashed line is based on the Hertz theory (smooth surfaces). 

 
The pressure distributions calculated by GT [5] for two different values of α are 

shown in Fig. 4.2. It can be seen that for small values of α, the asperity deformation is 
small compared to the bulk deformation, whereupon the pressure distribution is close to the 
Hertz theory. The effect of asperities becomes significant when α is large where the contact 
pressure is reduced and is spread over a wider area than according to the Hertz theory.  

Figure 4.3 shows the fraction of the central effective pressure p(0) and the 
maximum Hertzian pressure p0 as a function of the parameter α for two values of µ which 
bracket most practical engineering surfaces. It is clear from Fig. 4.3 that the parameter α is 
the primarily governing factor to predict the effect of surface roughness on the effective 
contact pressure, while the detailed geometry of the surface expressed by the parameter µ 
has a secondary effect. The effective pressure decreases as the roughness increases, and 
consequently, the ratio of the deformation of the asperities to the bulk increases. This 
contact problem has been analyzed by Mikic and Roca [8] by assuming that the asperity 
deforms plastically. However, results showed that the difference between their theory and 
the GT theory is small. 

For the unloading case it is, of course, interesting to evaluate the plastic 
deformation of the contacting surfaces. In general, for smooth surfaces initial yielding 
occurs when the maximum or central Hertz pressure equals: 
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Tabor [10] proposed that the value K in Eq. (4.10) is to be 0.6. Other researchers found that 
the K value depends on the Poisson’ s ratio v, see Section 3.2. However, the difference of 
the K value between the proposed models is small. For given contact conditions one is able 
to predict the contact deformation behavior. If the effective maximum or central pressure is 
larger than KH, bulk plastic deformation occurs and if the effective central pressure is lower 
than KH, plastic deformation may happen at asperity level. A plot of this map as a function 
of the surface roughness will be given along with the experimental results in the next 
section.  

     
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
��������	�: Ratio of central effective pressure to maximum Hertz pressure as a function of 

roughness parameter α and µ, after [4] and [5]. 
 
 
4.3 Experiment on the surface asperity and bulk deformation 
 
4.3.1 Specimens 
 
Hardened steel spheres (H = 7.5 GPa, E = 210 GPa and v = 0.3) with a diameter of 10 mm 
were used as a hard smooth spherical indenter. The deformable flat specimens used were 
made from aluminium (H = 0.24 GPa, E = 75.2 GPa and v = 0.34) and brass (H = 1.2 GPa, 
E = 105 GPa and v = 0.34). The sphere specimens have a center line average roughness Ra 
of about 0.01 µm and the average roughness of the flat specimens varied from about 0.1 to 
2.5 µm. 
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4.3.2 Experimental details 
 
The matching and stitching procedure (see Sub-section 3.5.1 and Appendix C) is utilized in 
these experiments. Experiments were performed on a setup as shown in Fig. 4.4. The 
maximum load which could be applied to this setup was about 30 N. Before doing any test, 
the spherical and flat specimens were cleaned with acetone and dried in air.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

��������	�: Experimental setup. 
 

An optical interference microscope was used to measure the three-dimensional 
surface roughness. An X-Y table which is controlled by stepper motors was employed to 
position the flat specimen from the loading position (position A) to the surface measuring 
position (position A’) and the other way around. The measurement sequence is as follows. 
First, the flat surface was measured under the optical interference microscope. The number 
of the stitching images which should be taken depends on the predicted contact area and the 
chosen magnification of the interferometer. After finishing the surface measurement in 
position A’ the flat surface was moved to the loading position A. In this loading position 
the statically mounted sphere specimen was moved down by the loading screw and 
subsequently loaded by the dead weight load system. To reduce the effect of friction, the 
contact region was lubricated. The load was applied to the sphere specimen for 30 seconds 
and then unloaded. Prior to measuring the after loading contact area with the optical 
interference microscope, again the spherical and flat specimens were cleaned and dried. 
After taking all the surface images data, the matching and stitching calculation was 
performed separately by a personal computer. 
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4.3.3 Experimental results 
 
4.3.3.1 Experiment on aluminium surfaces 
 
Figure 4.5 shows the measurements’  results of the aluminium flat surfaces before and after 
an experiment for load = 4 N, α = 0.86 and µ = 6. The matching and stitching results of this 
surface can be seen in Fig. 4.6a. It is clear from Fig. 4.6 that bulk deformation occurs as 
indicated by the different datum of the difference image following the shape of the 
spherical indenter. Figure 4.6b shows this phenomenon more clearly. As can be seen, the 
asperities are almost undeformed, whereas it is clear that the bulk is deformed. This is 
referred to as asperity persistence in which the plastic deformation of the asperity is very 
small compared to the bulk deformation.  
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         (a)                                                                     (b)  
 

��������	: Surface measurements of an aluminium flat surface, load = 4 N, α = 0.86 and 
µ = 6. (a) Before experiment and (b) after experiment. 

 
Figure 4.7 shows the example of the matching and stitching in the experimental 

results where deformation takes place both in the asperities and bulk. In this case, the 
asperities and bulk deformation are comparable, therefore, in the difference image (Fig. 
4.7a) the shape of the bulk deformation as in Fig. 4.6a is present, along with the local shape 
like archipelago which corresponds to the difference of the asperities deformation. 

An example of experimental results of plastic deformation on asperity level 
without any bulk plastic deformation of the aluminium surface is shown in Fig. 4.8. Here, 
the bulk deformation is not present as can be seen in the difference image of Fig. 4.8a. The 
deformation takes place in the asperities only.  

For all the experimental results, it can be seen that the matching and stitching 
performance is very good. The presence of a small scatter in the difference profile is due to 
the noise of the measurement. However, the important information or the global shape of 
the difference profile is very clear so that the plastic deformation behavior can be evaluated 
easily. It should be noted here that for all the present experiments, the value of σs was taken 
from the combined roughness of the surface [11], Rq = (Rq1

2 + Rq2
2)1/2, where Rq1 and Rq2 

are the r.m.s. roughness of surface 1 and surface 2, respectively. The parameters ηs 
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��������	�: Matching and stitching results of an aluminium surface, load = 4 N, α = 0.86 
and µ = 6. (a) Difference 3D image of Figure 4.5 and (b) Profile at y = 200 µm.  
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��������	�: Matching and stitching results of an aluminium surface, load = 4 N, α = 2.7 
and µ = 10. (a) Difference 3D image and (b) Profile at y = 158 µm. 
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��������	�: Matching and stitching results of an aluminium surface, load = 4 N, α = 2.84 

and µ = 12. (a) Difference 3D image and (b) Profile at y = 320 µm. 
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��������	�: Matching and stitching results of a brass surface, load = 12 N,  
α = 0.09 and µ = 11.  
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��������	
�: Profile of the matching and stitching results of a brass surface, load = 12 N, 
α = 0.2 and µ = 13. 
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: Profile of the matching and stitching results of a brass surface, load = 12 N, 
α = 0.5 and µ = 7. 

 
and β were calculated based on a ‘nine point summit’  [12] in order to determine the 
parameter µ. 
 
 
4.3.3.2 Experiment on brass surfaces 
 
Similar results were also found for the brass surfaces. Example results of the matching and 
stitching results for bulk deformation, combined bulk and asperity deformation and asperity 
deformation are shown in Fig. 4.9, Fig. 4.10 and Fig. 4.11, respectively.  
 
 
4.3.4 Discussion 
 
Experimental results showed that even for the same Hertzian contact pressure the plastic 
deformation state behaves differently depending on the roughness of the surfaces. The 
parameter α increases proportionally to the roughness of the surfaces, and as a result, the 
central effective pressure decreases. According to Eq. (4.10), plasticity of the bulk surface 
takes place when this central effective pressure is larger than the constant K times the 
hardness of the flat surface H. The experimental results presented are in line with the 
theoretical prediction of α in Eq. (4.8) and the central effective pressure curves of Fig. 4.3. 
It is unimportant whether the asperities deform elastically [5] or plastically [8] in this 
statistical approach.  

The results also showed the minor effect of the parameter µ. For bulk deformation 
of brass as was shown in Fig. 4.9, for instance, the parameter µ = 11 corresponds to the 
fraction of the central effective pressure and the maximum Hertz pressure p(0)/p0 of about 
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0.925 (α = 0.09). If the parameter µ is taken to be 4, the ratio p(0)/p0 = 0.9 and when the 
parameter µ is equal to 17, the ratio p(0)/p0 = 0.93 for the same α. Indeed, the difference in 
the ratio p(0)/p0 becomes larger when the two extremes of the parameter µ are taken as the 
parameter α increases, however, the difference is not that dramatic. 

Many experiments were performed in order to gain more insightful results for a 
certain range of surface roughness. These results are plotted in Fig. 4.12 for constructing 
the plastic deformation indentation behavior map where the ratio p(0)/H (instead of p0/H) is 
plotted as a function of the surface roughness Rq. In this figure the points AlA, AlB , AlAB, 
BrA, BrAB and BrB correspond with the contact condition locations of aluminium and brass 
as was shown in Fig. 4.6 to Fig. 4.8 and Fig. 4.9 to Fig. 4.11 (the index A, B and AB refer to 
asperity, bulk and combined asperity-bulk plastic deformation, respectively). The ratio of 
the non-dimensional effective maximum contact pressure p(0)/H reaches the value larger 
than 1 which contradicts the indentation results of Tabor [9]. This is because the calculation 
of the effective maximum contact pressure is based on the elastic contact theory. The map 
shows that for contact conditions located above the ratio p(0)/H = 0.6, bulk plastic 
deformation is observed, whilst below the ratio p(0)/H = 0.6, asperity deformation is 
attained for the whole range of the surface roughness tested. The plastic deformation of 
both the asperity and the bulk is observed for the contact conditions near the line p(0)/H = 
0.6. 
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�: Plastic deformation behavior of the contact between a rough surface and a 
smooth curved body. Square symbols are for aluminium and circle symbols are for brass 

where the full filled symbols indicating bulk deformation, the open symbols indicate 
asperity deformation and the half-filled symbols represent a combined  

deformation of the asperity and the bulk.  
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For practical engineering purposes it is very convenient to build an expression in 
determining the value of the ratio p(0)/p0 instead of using the graph in Fig. 4.3. Since the 
parameter µ has a secondary effect on the ratio p(0)/p0 and for µ = 4 and µ = 17 brackets 
most of the engineering surfaces a curve was found to fit the data as:  
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where α is as defined in Eq. (4.8). It was discussed earlier that if p(0)/H is larger than 0.6, 
bulk deformation does occur and for values of p(0)/H lower than 0.6, asperity deformation 
prevails, therefore, criterion can be made for the asperity deformation to occur as: 
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where K is the hardness coefficient in which the first yield occurs and p0 is the maximum 
Hertzian contact pressure: 
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If the analysis of Fig. 4.12 is taken carefully, there is a relatively large regime 
where plastic deformation takes place in both the asperities and the bulk. This regime start 
from the value of about p(0)/H  = 0.52 to p(0)/H = 0.65 as is bracketed by the thin dashed 
lines. In the plot of Fig. 4.12 there is no variation between p(0)/H along with the variation 
of Rq in deformation mode (asperity versus bulk deformation) as is indicated by the straight 
line. This is because the parameter Rq has been calculated inclusively in p(0). It is very 
convenient to introduce the degree of deformation mode as another criterion as is shown in 
Fig. 4.13. The degree of deformation, Dd, is defined as follows:  
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where Cm is as defined in Eq. (4.12). The expression for the mixed-deformation mode as is 
presented in Eq. (4.14) was chosen in order to have continuity in the transitions. If plastic 
deformation takes place on asperity level only, the degree of deformation is 0, if plastic 
deformation solely occurs in the bulk, the degree of deformation equals 1, but if plastic 
deformation takes place in both the asperities and the bulk, the degree of deformation varies 
from 0 to 1 depending on the proportion of the plastic deformation between asperity and 
bulk, which is controlled by Cm (= p(0)/H). 
 
 
4.3.5 The effect of thickness 
 
In 1948, Moore [13] demonstrated the remarkable persistence of surface asperities for the 
line contact situation. Moore pressed a highly polished hard steel roller against a face-
turned copper plate. The copper had previously been work hardened so that it was not 
capable of much additional work hardening and therefore an additional hardness of the 
asperities due to turning was not expected. Moore showed that even for very high loads the 
ridges in the copper remained clearly visible in the indentation profile as discussed in the 
previous section for the circular contact situation. 

Milner and Rowe [14] performed an experiment where a ‘penny-shaped’  rough 
surface specimen is compressed between smooth anvils, for which bulk plastic flow implies 
that every element of the specimen deforms plastically. Depending on the relative hardness, 
the asperities were either flattened or ‘pressed into’  the smooth surface.  

Based on the work of Moore [13] and Milner and Rowe [14], Greenwood and 
Rowe [15] performed an experiment to study the effect of the thickness on the flattening of 
surface asperities under bulk plastic flow. In their experiment, a rough flat surface of a 
cylinder (Ra = 1 µm) was pressed against a hard smooth steel (Ra = 0.03 µm) anvil. Profiles 
of the deformed surface after 10% compression of tall and ‘penny-shaped’  cylinders were 
compared which implied different specimen thickness. In both cases, there is a bulk dented 
area around the center of the contact. However, the degree of asperity deformation is 
different. According to Eq. (E.8) in Appendix E, the maximum contact pressure occurs at 
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the center of the contact; therefore, the deformation of the bulk surface is higher around the 
contact center. If there is no sticking in the contact interface and the coefficient of friction is 
not zero, the required mean contact pressure decreases as the thickness of the blank 
increases, see Figure 4.14. This behavior becomes more pronounced as the coefficient of 
friction increases. Up to a certain value of the coefficient of friction, the assumption of pure 
sliding is invalid as the sticking mechanism start to occur. Greenwood and Rowe [15] 
explained that a degree of flattening of the asperities for a thin ‘penny-shaped’  cylinder 
occurs because the plastic deformation extends to the surface, while for the thick or tall 
cylinder, the plastic deformation still occurs in the bulk (below the surface), therefore, the 
asperities persist.   
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�: Non-dimensional mean pressure as a function of non-dimensional thickness 
of compression of a blank specimen. 

 
Kimura and Childs [16] studied the asperity deformation under bulk plastic 

straining conditions based on the velocity field analysis theoretically. The asperities were 
modeled by an array of ridges. It was found that the ratio of the real contact area to the 
nominal contact area, which implies the degree of asperity flattening, is sensitive to the 
thickness t of the specimen when t/λ < 15 in which λ is the wavelength of the surface 
ridges. 
 Summarizing, the effect of the material or specimen thickness on the flattening of 
surface asperities described in literature, were studied based on bulk plastic flow or very 
high load. This idea is not of interest in the present study, since bulk deformation is 
avoided. However, it is also interesting to study the effect of the material thickness on the 
deformation behavior as was discussed in the previous section.  
 Experiments were done in the same setup and in the same material as was 
described in Sub-sections 4.3.1 and 4.3.2. For the aluminium two samples were used with a 
a 
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: Matching and stitching results of an aluminium surface, 
 t = 0.3 mm, load = 4 N, α = 3.8 and Cm = 0.52. 
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�: Matching and stitching results of an aluminium surface, 
 t = 10 mm, load = 4 N, α = 6.2 and Cm = 0.41. 
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�: Matching and stitching results of a brass surface, 
 t = 0.05 mm, load = 40 N, α = 0.26 and Cm = 0.8. 
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�: Matching and stitching results of a brass surface, 
 t = 8 mm, load = 40 N, α = 0.22 and Cm = 0.83. 
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thickness of 0.3 mm and 10 mm and for the brass samples of 0.05 mm and 8 mm thickness 
were used. Results of the experiments studying the effect of thickness on the deformation 
mode are presented in Figs. 4.15 and 4.16 for aluminium surfaces and Figs. 4.17 and 4.18 
for Brass surfaces. As can be seen, all the parameters involved follow the criteria discussed 
in Sub-section 4.3.4, Eq. (4.12), where the thickness parameter is not considered. It can be 
concluded that for the contact between a rough surface against a smooth spherical body 
without bulk plastic straining conditions, there is no thickness effect.    
 
 
4.4 Deterministic elastic-plastic multi asperity contact model 
 
In this section, the new developed elliptic elastic-plastic single asperity contact as was 
presented in Section 3.6 will be extended to the multi asperity or deterministic rough 
surface contact. Bulk deformation is not considered in the analysis, because the topic of this 
thesis is running-in due to surface roughness change.    
 
 
4.4.1 Overview of the contact models of rough surfaces 
 
The interest in modeling the contact of rough surfaces is very high because of its 
importance with respect to many tribological problems. This can be seen in the review 
papers of Bhushan [17], Liu et al. [18] and Adams and Nosonovsky [19]. Most of the 
models consider a hard perfectly smooth surface in contact with a deformable rough 
surface. 
 Roughness always exists on the surfaces. Perfectly smooth surfaces are very rare 
in nature. A surface is composed of large number length scales that are superimposed on 
each other [20]. Although surface roughness is intrinsic, measured roughness is extrinsic, 
depending on the sampling lengths and intervals of the measuring devices. The complex 
nature of roughness, together with elastic-plastic deformation, strain hardening, asperity 
interaction, et cetera, will contribute to the difficulty of modeling the contact of rough 
surfaces. However, several attempts have been conducted in this field.   

Modeling the contact of rough surfaces was pioneered by Greenwood and 
Williamson [6]. In their model a nominal flat surface is assumed to be composed with 
spherical asperities of the same radius, and the height of the asperities is represented by a 
well-defined statistical distribution function (i.e. Gaussian). The contact analysis is based 
on the Hertz theory [3] where the asperities deform elastically. This basic elastic asperity-
based contact model has been extended to the contact of rough curved surfaces [5], the 
contact of two nominally flat rough surfaces with misaligned asperities [21], the contact of 
rough surfaces considering the distribution of radii of the asperities [22] and elliptic 
paraboloidal surfaces [23]. However, the aforementioned models are devoted to the elastic 
contact situation. The basic plastic contact model which is known as the profilometric 
model or surface micro-geometry model has been introduced by Abbott and Firestone [24]. 
Based on experimental results, Pullen and Williamson [25] proposed a volume conservation 
model for the fully plastic contact of a rough surface. Kucharski et al. [26] confirmed this 
model by the finite element analysis. In order to bridge the two extreme deformation 
models, elastic and fully plastic, Chang et al. (CEB model) [27] developed an elastic-plastic 
contact model of rough surfaces based on volume conservation of the plastically deforming 
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asperities. In the CEB model there is no transition regime from the elastic to the fully 
plastic contact regime, while Johnson [4] showed, based on the analysis of the indentation 
of a sphere on a flat, that there is a long transition regime from the point of initial yielding 
to the fully plastic state. Therefore, Zhao et al. (ZMC model) [28] proposed a new elastic-
plastic contact model of rough surfaces which includes this transition by mathematical 
smoothing expressions to incorporate the elastic and fully plastic contact parameters. Kogut 
and Etsion (KE model) [29] performed a detailed finite element analysis on the elastic-
plastic contact of a sphere and a rigid flat and then extended this to the contact of rough 
surfaces [30]. The empirical coefficients for the dimensionless relations for contact load, 
contact area and mean contact pressure as a function of contact interference have been 
provided. However, the analysis is limited up to the onset of the fully plastic state. Similar 
work has been done recently by Jackson and Green (JG model) [31, 32]. Because the 
surface textures of most of the engineering surfaces are oriented with the direction of the 
relative motion of cutting tools to the surface, the different ellipticity ratios of the micro-
contacts are formed according to the surface forming method. Several models have been 
proposed to extend the elastic-plastic isotropic contact model of rough surfaces into an 
anisotropic one. Horng [33], for instance, has extended the CEB model to the elliptical 
contact situation. Similar approaches have been performed by Jeng and Wang [34] in 
extending the ZMC model. 

Most of the above statistical models can predict important trends on the effect of 
surface properties on the real contact area, however, its usefulness is limited by, for 
example, the simplified assumption about asperity geometry, height distribution and the 
difficulty in determining the statistical roughness parameters. With the advent of computer 
technology, a measured profile can be digitalized and used for contact simulation. Webster 
and Sayles [35] used the matrix inversion method and Rajendrakumar and Biswas [9] used 
the complex variables method to simulate the rough line contact situation. For the elastic 
contact of three-dimensional rough surfaces, numerical analyses have been done by many 
investigators such as Liang and Linqing [36], Ren and Lee [37] and Chang and Gao [38]. In 
these models, the contact between a smooth and a rough surface is modeled by considering 
asperities as bars. Equations which relate the elastic displacement of an asperity to the 
pressure imposed are applied. 

Majumdar and Bhushan [39] and Bhushan and Majumdar [40] have developed an 
elastic-plastic contact model of rough surface based on fractal geometry. The idea comes 
due to the fact that the surface roughness parameters depend strongly on the resolution of 
the measuring instrument or any other form of filtering. By using the fractal geometry there 
is no scale dependence of the surface roughness, however, not all surfaces have fractal 
properties.     

Summarizing, there are many studies devoted to model the contact of rough 
surfaces. However, much of the published models have assumed qualitative results such as 
Gaussian distribution of the roughness heights rather than a real measured distribution. 
Some models have been proposed to analyze the contact of rough surfaces deterministically 
by employing numerical methods. However, there are some shortcomings such as 
computational cost and the incorporation of contact deformation regimes. Most of the 
numerical contact models of rough surfaces consider elastic deformation; there are few 
models which include plastic deformation. It is difficult to gain a model considering the 
elastic-plastic deformation contact regime. In the present study, contact of rough surfaces is 
analyzed based on measured real surfaces. An analytical approach is used; hence the 
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calculation cost is reduced significantly. All the contact deformation regimes, elastic, 
elastic-plastic and plastic are considered in the analysis. The details of the method are 
described in the next section.      
 
 
4.4.2 Deterministic contact model of rough surfaces 
 
In a real rough surface, the asperities are not perfectly following certain shape geometry 
like spherical or paraboloidal, instead protrude randomly in the three-dimensional space. 
The radius of each asperity is not the same and in many cases the height distribution of the 
asperities does not follow the Gaussian distribution as is used by most of the statistical 
contact models of rough surfaces. In the present study, rough surfaces are modeled by an 
array of asperities with different radii and heights. Details of this deterministic model will 
be discussed further in the following sub-sections.   
 
 
4.4.2.1 Asperity determination 
 
The three-dimensional (3D) surface roughness data are obtained by an interference 
microscope as was shown in Fig. 4.4. The data contains a discrete presentation of the 3D 
surface roughness over a certain area depending on the measuring apparatus capability. 
These data will be processed to determine the asperities’  location and geometry by using a 
certain method. There are several methods to evaluate the asperity parameters such as the 
nine-point summit method [12], volume conservation method [41], et cetera. 
 Greenwood [12] introduced a way to calculate the asperity properties using the 
peak or summit method. A summit is defined as a local surface height higher than its 
neighboring points. This leads to the definition of peak (4.19a), five-point summit (4.19b) 
and nine-point summit (4.19c). To minimize the probability of detecting a ‘false summit’  
the nine-point summit definition is used.  
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�: Summit definitions. 
 
Based on these definitions the curvatures of the summit are defined as: 
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where κ and β are the curvature and the radius of asperity, respectively. The index x 
indicates the x-direction and the index y for y-direction. px and py are the pixel size or 
sample length in x-direction and y-direction, respectively. This method has been used 
extensively, for instance, to analyze the tribological aspects of the deepdrawing process 
[42], friction and wear of ceramics [43] and mixed lubrication of line contacts [44].       
 Masen et al. [45] proposed a method to define the asperity geometry by fitting the 
micro-contacts with paraboloids using the least square method. Masen [46] and de Rooij 
[41] used a volume conservation model for determining the contact geometry of the 
asperities. In this method, the micro-contacts of real rough surfaces are fitted by elliptical 
paraboloids where the initial volume of the micro-contacts is conserved as well as the area 
of contacts. Details of this method can bee seen in Appendix F. The curvatures of the 
elliptical paraboloid using this method are expressed as: 
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��������	��: 3D surface asperities and its centered x-profile. 
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��������	�
: Location of the asperities for ω = ω1 in Figure 4.20,  
(a) volume conservation method, (b) summit method. 
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(a)                                                                                     (b) 
 

��������	��: Location of the asperities for ω = ω2 in Figure 4.20,  
(a) volume conservation method, (b) summit method. 
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(a)                                                                                     (b) 
 

��������	��: Location of the asperities for ω = ω3 in Figure 4.20,  
(a) volume conservation method, (b) summit method. 

 
where V is the volume from the measured micro-contacts, A is the cross-sectional area of 
the micro-contacts and Lx and Ly is the length or diameter of the cross-sectional micro-
contact area in x- and y-direction, respectively. The asperity geometry depends on the 
indentation or interference ω, and the location of the asperity is determined from the 
weighted center of the cross-sectional contact area. The curvatures change as the 
interference changes whilst in the summit method the geometry of the asperity is constant. 
This behavior is illustrated in Fig. 4.20 to Fig. 4.23. As can be seen from the figures, there 
is a clear difference between the summit method and the volume conservation method. The 
number of asperities in contact (micro-contacts) changes as the interference changes. In the 
summit method this number always increases, see Figs. 4.21b, 4.22b and 4.23b, and the 
geometry of the asperities in contact does not depend on the interference. For the volume 
conservation method, this number changes depending on the surface geometry, see Figs. 
4.21a, 4.22a and 4.23a, and the geometry and location of the asperities in contact depend on 
the interference. For ω = ω3 for example, there are 40 asperities in contact according to the 
summit method whilst for the volume conservation method this is only 1 large asperity. It is 
clear from Fig. 4.20 that the volume conservation method is much better than the summit 
method for ω = ω3. This concludes that the summit method represents the micro-contacts 
well only for the very small interference whilst in the volume conservation method the 
micro-contacts are represented well for all interference; therefore, in the present study the 
latter is used. 

After determining the asperity curvatures, Eqs. (4.17) and (4.18), another 
important parameter in the deterministic contact model is the asperity height. According to 
[41] the height of the asperity is determined from the maximum pixel height from the 
measured surface data within the cut-off contact area regime as is schematically shown in 
Fig. 4.24. When all the locations, the curvatures (or radii) and the heights of the asperities 
are determined, the calculation with the deterministic contact model can start.      
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��������	��: Asperity height determination. 
 
 
4.4.2.2 Modeling procedure 
 
The iterative procedure for analyzing the contact of rough surfaces based on the volume 
conservation method is shown schematically in Fig. 4.25. The 3D data of the contacting 
surfaces, z(x,y), are taken from the roughness measurement apparatus. The material 
properties such as elasticity modulus E, Poisson’ s ratio v and hardness H of the surfaces are 
assumed to be the same as the bulk. To bring these surfaces into contact, load must be 
applied. In the present study, analysis of the contact is based on the separation; therefore, 
the load is calculated from the separation. For this purpose, a separation is given as an 
initial guess. At this separation, there will be a number of asperities in contact (micro-
contacts). Subsequently, all the contact input parameters such as curvature, height and 
location of each asperity in contact are determined as was discussed previously. 

Given all the contact input parameters, the contact load, the contact area, et cetera 
can be calculated readily from the analysis of a single asperity as was presented in Section 
3.6.  

 Summation of all the micro-contact loads gives the macro-contact load (input 
load), therefore, an iterative procedure is applied by changing the separation until the 
difference between summation of all the micro-contacts and macro-contact load reach a 
certain criterion, ε. When the criterion is satisfied the iteration loop is stopped and the 
contact parameters such as load, contact area, plastic deformation, et cetera for each 
asperity are taken from the last separation.               
 The roughness data obtained by the optical interferometer normally suffer from 
measurement errors. One of the errors is in the spots with high local surface slopes where 
the interferometer is not able to measure. This type of spots is referred to as ‘missing 
points’ . Another error is the unnaturally local surface heights which are so-called ‘spikes’ . 
Due to these errors, the measured roughness data should be preprocessed before they can be 
used for input of the contact model. The heights of the missing points are estimated by 
applying an interpolation method from their correctly measured neighboring points [42]. It 
is not easy to remove the ‘spikes’  error because it is not clear whether it is a measurement 
error or a real measurement result. The removal of these is normally done by filtering the 
surface with heights less than three times the r.m.s. roughness for the lower limit and more 
than three times the r.m.s. roughness for the upper limit. 
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��������	�: Flow diagram of the volume conservation method contact calculation of 
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One of the most important topics in modeling the contact of rough surfaces 
deterministically is to determine the location of the contacting bodies. As an example, the 
contact of a rough flat surface with a smooth spherical surface will be used for explanation. 
In this contact situation, the coordinate of the sphere in contact with the flat should be 
determined properly before applying the rough surfaces contact model. For this purpose, an 
iterative method is introduced. It is relatively difficult to estimate the location of the center 
of the ball indenter based on the deforming flat surface. Therefore, the contact problem as 
was presented in Fig. 4.1 is converted into an equivalent one. In this case, the geometrical 
contact of a smooth ball against a rough surface is now converted into the contact of a 
smooth flat against a rough ball surface. Figure 4.26 shows the y-profile deformation results 
of a rough ball after being in contact with a hard smooth flat (thick solid line). As can be 
seen, the magnitude of the deforming asperities is not flat but follows the straight line (thin 
dashed line) with a positive value of the slope, which means that the ‘true’  center of the ball 
indenter is somewhere on the right-side from the present position or the position of the 
present indenter is on the left-side of the ‘true’  one. Similarly, when the present position of 
the ball indenter is in the right-side of the ‘true’  one, as is shown in Fig. 4.27, the 
magnitude of the plastic deforming asperities follows the straight line with a positive value 
of the slope. By changing the point location iteratively for x and y directions, the coordinate 
of the contact center of the ball indenter can be determined. This is indicated by the flat 
magnitude of the plastic deformation of the asperities.        
 
 
4.5 Experiment on the deterministic contact of rough surfaces 
 
4.5.1 Experimental procedures 
 
A hard and smooth curved surface in contact with a deformable nominally flat rough 
surface is used in the present experiments. A hardened steel sphere (H = 7.5 GPa, E = 210 
GPa and v = 0.3) with a diameter of 10 mm and the average roughness Ra = 0.01 µm was 
used as a hard smooth surface and aluminium (H = 0.24 GPa, E = 75.2 GPa and v = 0.34) 
plates were used as deformable flat surfaces. Several contact conditions were applied by 
changing the flat surface for different roughness. 
 The setup and procedures of the experiment are basically the same as the 
experiment in studying the surface asperity and bulk deformation as was discussed in Sub-
section 4.3.2.     
 
 
4.5.2 Experimental results 
 
Two surfaces were used to perform the experiments. The first, Surface A, has asperities 
with relatively low density, r.m.s. roughness of about 5 µm. The second surface, Surface B, 
has a higher asperity density and the r.m.s. roughness of this surface is about 1.4 µm. A 
load of 1 N has been applied for each contact loading case. Areas of the surfaces are 
presented only near the region of the contact.    
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4.5.2.1 Experimental results of surface A 
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(a)                                                                         (b) 
�
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��������	��: Initial Surface A (a) and location (not size) of the corresponding contact 
asperities according to the volume conservation method (b). 

 
 

 
 
 

x − Axis [µm]

y 
− 

A
xi

s [
µm

]

0 100 200 300 400 500
0

50

100

150

200

250

300

350

400

450

x − Axis [µm]

y 
− 

A
xi

s 
[µ

m
]

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

 
 
 

(a)                                                                         (b) 
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��������	��: Contact area of Surface A: (a) present model and (b) experiment. 
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 (b) 
�
�

��������	��: Profile of the matching and stitching of Surface A:  
(a) x-profile at y = 195 µm and (b) y-profile at x = 288 µm. 
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4.5.2.1 Experimental results of surface B 
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(a)                                                                              (b) 
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��������	�
: Initial Surface B (a) and location (not size) of the corresponding contact 
asperities according to the volume conservation method (b). 
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(a)                                                                         (b) 
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��������	��: Contact area of Surface B: (a) present model and (b) experiment. 
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(b) 
 
 

��������	��: 3D difference image of Surface B: (a) present model and (b) experiment. 
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 (b) 
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��������	��: Profile of the matching and stitching of Surface B:  
(a) x-profile at y = 195 µm and (b) y-profile at x = 171 µm. 
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4.5.3 Discussion 
 
Both Surface A and B are made from aluminium, the same material was used for the single 
asperity experiments in the fully plastic regime (Appendix B). From Appendix B it was 
found that the ch value for this material is about 0.71H. This value is used in the present 
experiments for the contact of rough surfaces. Another value which is used is the 
coefficient for the ratio between fully plastic and initial yield deformation cA of 160.              

Figure 4.28a depicts the input surface for the rough surface contact model. The 
value of σ of this surface is 5 µm and together with 1 N load gives an α value of about 
16.28 (Eq. (4.8)). According to the criterion in Eq. (4.12) results a value of Cm = 0.152 
which is much smaller than 0.6, so that this surface will deform on asperity level. Another 
input of the contacting surface is the smooth spherical surface of radius 5 mm. For the 
determined separation of 1 N load, micro-contacts are formed and the location of these 
micro-contacts is shown in Fig. 4.28b in which they are indicated by points.  
 Figure 4.29a presents the results of the rough surface contact simulation for 
calculating the micro-contact areas. When comparing this figure with Fig. 4.28b, it gives 
the impression of the geometries of the asperities. Some asperities are small and others are 
much bigger. Figure 4.29b shows the difference image of the matching and stitching results 
of the surface in Fig. 4.28a before and after indentation. There is a variation in magnitude 
of plastic deformation of the asperities; consequently, the images look different in scale 
according to its plastic deformation. However, the cross-sectionals of the plastic 
deformations, which imply the contact areas, are clearly observed. The difference in the 
cross-sectional contact areas between Figs. 4.29a and 4.29b is very small, indicating that 
the prediction of the developed contact model is very good. 
 Figure 4.30 demonstrates the prediction and the experimental results of the change 
in surface topography. The results confirm the prediction of the mode of deformation very 
well in which the deformation takes place on asperity level. It is also shown that the 
prediction of the present model of the change of the surface topography is very good. 
 Similar results are found in the contacting Surface B with a smooth sphere, see 
Fig. 4.31 to Fig. 4.34. The α value of this surface is about 4.56 and the Cm value is about 
0.3, meaning that the surface will deform on asperity level. The asperity density of this 
surface is higher than Surface A, therefore, locations of the asperities are close to each 
other. The contact area and the asperity deformation of the micro-contacts are well 
predicted by the model. Figure 4.33 demonstrates the details of the difference image of the 
model prediction and the measured one in three-dimensional. In Fig. 4.33b there are values 
in locations where no contact occurs. This may be caused by the experimental noise, 
however, the real deformation is distinctive. As can be seen in Fig. 4.34, there is a small 
difference in the magnitude of plastic deformation. This difference may be caused by the 
‘spikes’  of the surface which contribute to the value of the separation or the error in 
determining the height of the asperities in contact. However, the difference is relatively 
small compared to the total deformation. In general, it can be concluded that the proposed 
contact model for the deterministic static contact of rough surfaces works very well.    
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4.6 Concluding remarks 
 
A theoretical and experimental investigation was carried out to study the deformation 
behavior of the contact between a real rough surface and a smooth ball.  The experimental 
results confirmed the theoretical prediction very well. The main finding of the present work 
is that the surface roughness is the primal factor in controlling the deformation behavior of 
contacting surfaces. For a given Hertzian contact pressure situation, the deformation 
behavior differs significantly. For the purpose of engineering application, a formula is 
developed to predict the deformation behavior of contacting engineering surfaces. If the 
ratio p(0)/H is larger than 0.6, bulk deformation occurs and if the ratio p(0)/H is lower than 
0.6, asperity deformation takes place. Combination between asperity and bulk deformation 
occurs at the ratio p(0)/H � 0.6. 
 Preliminary study of the contact of single asperity has been extended to the 
deterministic multi-asperity contact model for rough surfaces. In this study the surface bulk 
deformation is excluded in the analysis, therefore, the previous criterion is applied to 
determine the deformation mode of contacting surfaces. Surface asperities are modeled by 
an array of elliptic paraboloids in which the unit event of a single paraboloid contact is 
analyzed using the elastic-plastic elliptical contact model as was developed in the previous 
chapter. Results showed that the theory of the developed model predicts the contact area 
and the asperity deformation of the static contact of rough surfaces very well.  
 This elliptic elastic-plastic deterministic static contact model of rough surfaces 
will be extended to the dynamic contact situation in Chapter 5.    
 
 
References 
 
[1] Majumdar, A. and Bhushan, B., 1995, “ Characterization and modeling of surface roughness 

and contact mechanics,”  Hanbook of Micro/Nano Tribology, edited by Bharat Bhushan, CRC 
Press, Boca Raton, FL. 

[2] Thomas, T.R., 1999, Rough Surfaces, Imperial College Press, London. 
[3] Timoshenko, S. and Goodier, J.N., 1951, Theory of Elasticity, McGraw-Hill Book Company 

Inc., New York. 
[4] Johnson, K.L., 1985, Contact Mechanics, Cambridge Univ. Press, Cambridge, UK.  
[5] Greenwood, J.A. and Tripp, J.H., 1967, “ The elastic contact of rough spheres,”  ASME-

Journal of Applied Mechanics 34, pp. 153 – 159. 
[6] Greenwood, J.A. and Williamson, J.B.P., 1966, “ Contact of nominally flat surfaces,”  Proc. R. 

Soc London A295, pp. 300 – 319. 
[7] Lo, C.C., 1969, “ Elastic contact of rough cylinders,”  Int. Journal of Mech. Sci. 11, pp. 105 – 

115. 
[8] Mikic, B.B. and Roca, R.T., 1974, “ A solution to the contact of two rough spherical surfaces,”  

ASME-Journal of Applied Mechanics 96, pp. 801 – 803. 
[9] Rajendrakumar, P.K. and Biswas, S.K., 1997, “ Deformation due to contact between a two-

dimensional rough surface and a smooth cylinder,”  Tribology Letters 3, pp. 297 – 301. 
[10] Tabor, D., 1951, The Hardness of Metals, Oxford University Press, UK. 
[11] Greenwood, J.A., Johnson, K.L. and Matsubara, E., 1984, “ A surface roughness parameter in 

Hertz contact,”  Wear 100, pp. 47 – 57. 
[12] Greenwood, J.A., 1984, “ A unified theory of surface roughness,”  Proc. R. Soc London A393, 

pp. 133 – 157. 



 

 

107

[13] Moore, A.J.W., 1948, “ Deformation of metals in static and in sliding contacts,”  Proc. R. Soc 
London A195, pp. 231 – 249. 

[14] Milner, D.R. and Rowe, G.W., 1962, “ Fundamentals of solid-phase welding,”  Metallurgical 
Reviews 7, pp. 433 – 480. 

[15] Greenwood, J.A. and Rowe, G.W., 1965, “ Deformation of asperities during bulk plastic 
flow,”  Journal of Applied Physics 36, pp. 667 – 668. 

[16] Kimura, Y. and Childs, T.H.C., 1999, “ Surface asperity deformation under bulk plastic 
straining conditions,”  Int. Journal of Mech. Sci. 41, pp. 283 – 307. 

[17] Bhushan, B., 1998, “ Contact mechanics of rough surfaces in tribology: Multiple asperity 
contacts,”  Tribology Letters 4, pp. 1 – 35. 

[18] Liu, G., Wang, Q.J. and Lin, C., 1999, “ A survey of current models for simulating the contact 
between rough surfaces,”  Tribology Transactions 42, pp. 581 – 591. 

[19] Adams, G.G. and Nosonovsky, M., 2000, “ Contact modeling – Forces,”  Tribology 
International 33, pp. 431 – 442. 

[20] Bhushan, B., 1995, Handbook of Micro/Nanotribology, CRC Press, Boca Raton, FL. 
[21] Greenwood, J.A. and Tripp, J.H., 1970-71, “ The contact of two nominally flat rough 

surfaces,”  Proc. Instn. Mech. Engrs. 185, pp. 625 – 633. 
[22] Hisakado, T., 1974, “ Effect of surface roughness on contact between solid surfaces,”  Wear 

28, pp. 217 – 234. 
[23] Bush, A.W., Gibson, R.D. and Thomas, T.R., 1975, “ The elastic contact of a rough surface,”  

Wear 35, pp. 87 – 111. 
[24] Abbott, E.J. and Firestone, F.A., 1933, “ Specifying surface quality – A method based on 

accurate measurement and comparison,”  Mech. Engr. 55, p. 569. 
[25] Pullen, J. and Williamson, J.B.P., 1972, “ On the plastic contact of rough surfaces,”  Proc. R. 

Soc London A327, pp. 159 – 173. 
[26] Kucharski, S., Klimczak, T., Polijaniuk, A. and Kaczmarek, J., 1994, “ Finite element model 

for the contact of rough surfaces,”  Wear 177, pp. 1 – 13. 
[27] Chang, W.R., Etsion, I. and Bogy, D.B., 1987, “ An elastic-plastic model for the contact of 

rough surfaces,”  ASME-Journal of Tribology 109, pp. 257 – 263. 
[28] Zhao, Y., Maietta, D.M. and Chang, L., 2000, “ An asperity microcontact model incorporating 

the transition from elastic deformation to fully plastic flow,”  ASME-Journal of Tribology 122, 
pp. 86 – 93. 

[29] Kogut, L. and Etsion, I., 2002, “ Elastic-plastic contact analysis of a sphere and a rigid flat,”  
ASME-Journal of Applied Mechanics 69, pp. 657 – 662. 

[30] Kogut, L. and Etsion, I., 2003, “ A finite element based elastic-plastic model for the contact of 
rough surfaces,”  Tribology Transactions 46, pp. 383 – 390. 

[31] Jackson, R.L. and Green, I., 2005, “ A finite element study of elasto-plastic hemispherical 
contact against a rigid flat,”  ASME-Journal of Tribology 127, pp. 343 – 354. 

[32] Jackson, R.L. and Green, I., 2003, “ A statistical model of elasto-plastic asperity contact of 
rough surfaces,”  Proceedings of STLE/ASME Joint Tribology Conference TRIB-102. 

[33] Horng, J.H., 1998, “ An elliptic elastic-plastic asperity microcontact model for rough 
surfaces,”  ASME-Journal of Tribology 120, pp. 82 – 88. 

[34] Jeng, Y.R. and Wang, P.Y., 2003, “ An elliptic microcontact model considering elastic, 
elastoplastic and plastic deformation,”  ASME-Journal of Tribology 125, pp. 232 – 240. 

[35] Webster, M.N. and Sayles, R., 1986, “ A numerical model for the elastic frictionless contact of 
real rough surfaces,”  ASME-Journal of Tribology 108, pp. 314 – 320. 

[36] Liang, X. and Linqing, Z., 1991, “ A numerical model for the elastic contact of three-
dimensional real rough surfaces,”  Wear 148, pp. 91 – 100. 

[37] Ren, N. and Lee, S.C., 1993, “ Contact simulation of three-dimensional rough surfaces using 
moving grid method,”  ASME-Journal of Tribology 115, pp. 597 – 601. 

[38] Chang, L. and Gao, Y., 1999, “ A simple numerical method for contact analysis of rough 
surfaces,”  ASME-Journal of Tribology 121, pp. 425 – 432. 



 

 

108

[39] Majumdar, A. and Bhushan, B., 1991, “ Fractal model of elastic-plastic contact between rough 
surfaces,”  ASME-Journal of Tribology 113, pp. 1 – 11. 

[40] Bhushan, B. and Majumdar, A., 1992, “ Elastic-plastic contact model of bifractal surfaces,”  
Wear 153, pp. 53 – 64. 

[41] de Rooij, M.B., 2005, Handout Solids and Surfaces, University of Twente, Enschede, The 
Netherlands. 

[42] de Rooij, M.B., 1998, Tribological Aspects of Unlubricated Deepdrawing Processes, PhD 
Thesis, University of Twente, Enschede, The Netherlands. 

[43] Pasaribu, H.R., 2005, Friction and Wear of Zirconia and Alumina Ceramics Doped with CuO, 
PhD Thesis, University of Twente, Enschede, The Netherlands. 

[44] Faraon, I.C., 2005, Mixed Lubricated Line Contacts, PhD Thesis, University of Twente, 
Enschede, The Netherlands. 

[45] Masen, M.A., de Rooij, M.B. and Schipper, D.J., 2005, “ Micro-contact based modelling of 
abarasive wear,”  Wear 258, pp. 339 – 348. 

[46] Masen, M.A., 2004, Abrasive Tool Wear in Metal Forming Processes, PhD Thesis, University 
of Twente, Enschede, The Netherlands. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aaa 



 

 
 
 
Chapter 5 
 
Running-in of rolling contacts 
 
 
 
 
 
 
 
 
5.1. Introduction 
 
Most of mechanical components with surface contacts during operation have a running-in 
period for enhancing the surface contact conformity conditions before they reach a steady-
state operation. Changes in the surface topography, friction, temperature and wear rate are 
commonly observed shortly after the start of the contact between fresh solid surfaces. The 
properties of two mating surfaces are continuously and monotonously changing during this 
initial stage of the operation. These changes are advantageous when the running-in process 
succeeds, i.e. the degree of conformity increases so that the performance of the contacting 
components improves. In other cases, due to some contact conditions, the better degree of 
the conformity is not attained, which leads to the failure of the contacting components soon 
after the initial contact operation. This failure is referred to as run-out.       

Obviously, running-in is beneficial for engineers. Therefore a lot of work has been 
done to study the running-in, as was presented in Chapter 2. However, fundamental studies 
which attempt to investigate the detailed process of the running-in period phenomena are 
relatively rare. Rather, many researches which have been conducted focused on the steady-
state conditions that follow instead of studying the transition process prior to it. Running-in 
plays an important role in friction and wear of tribology systems during the steady-state 
period. Ignoring the running-in aspects means overlooking the important clues to the 
evolution of conjoint processes which leads to the final long-term steady-state friction and 
wear behavior.     

The term running-in is related to the terms breaking-in and wearing-in. The 
extensive discussion and definition about these terms can be found in [1]. Generally, 
running-in has been connected to the process by which contacting machine parts improve in 
conformity, surface topography and frictional compatibility during the initial stage of use. 
This leads to a very wide definition and is applicable to a broad spectrum of mechanical 
contact problems. Running-in is still a vast problem area in which much investigation 
remains to be done. Running-in is very complex; however, based on the literature review in 
Chapter 2, plastic deformation and mild wear are the dominant mechanisms during running-
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in. In case of a rolling contact situation plastic, deformation will be dominant. There are 
two types of the tribological transition of running-in [2], namely, induced running-in and 
non-induced or natural running-in. Induced running-in is referred to when the operator 
applies a specified set of procedures in order to gain the desired surface condition after 
running-in of certain contacting components. Whilst non-induced or natural running-in 
occurs as the system ‘ages’  without changing the operating contact conditions such as 
increasing the load, velocity et cetera. For non-induced running-in, the performance of 
running-in is mostly determined by the finished surface topography from the manufacturing 
process. 

In this chapter, the change of surface topography due to plastic deformation of the 
non-induced running-in of a rolling contact will be studied. On the basis of the developed 
elastic-plastic elliptical contact model in Chapter 3 and the deterministic contact model of 
rough surfaces in Chapter 4, the surface topography changes during running-in for a rolling 
contact is modeled in Section 5.2. Before modeling the rolling situation, repeated contact 
without rolling is studied in this section. In Section 5.3 a procedure, which will be used to 
perform the experiments to verify the proposed model, is presented. Section 5.4 gives the 
experimental results along with the proposed model prediction. Discussion of the results is 
also presented in this section. Conclusions are given in the last section.    
 
 
5.2 Modeling running-in of rolling contacts 
 
Most of the running-in models available in literature, e.g. [3-8], are devoted to running-in 
with respect to wear during sliding motion. The models are designed to predict the change 
of the macroscopic wear volume or the standard deviation of the surface roughness rather 
than the change of the surface topography locally during the running-in process. Frictional 
behavior during running-in has been modeled by Blau [9] semi-empirically, however, the 
model is more phenomenological, since there are many constants introduced in order to 
portray the shape of the friction curves globally. In the present study, the change of the 
surface topography during running-in is analyzed deterministically and is concentrated on 
the pure rolling contact situation.   
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There are several types of repeated contacts such as: (1) repeated contact of the 
contacting bodies by loading-unloading in normal direction (z-direction) without changing 
the contact position in the contact plane which is referred to as repeated stationary contact, 
(2) repeated sliding contact and (3) repeated rolling contact. This study focuses on the 
repeated rolling contact. However, this type of repeated contact is principally based on 
repeated stationary contact; therefore the repeated stationary contact is evaluated before 
modeling of the repeated rolling contact. 

Basically, for repeated stationary and rolling contacts, the model is built upon the 
model as was discussed in the last section of Chapter 2. Here, the wear model part is 
excluded so that the schematic model as was illustrated in Fig. 2.12, results into the model 
as schematically presented in Fig. 5.1. Details of the proposed model are discussed in the 
next sub-sections.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
��������	�: Asperity height determination. 

 
In the following analysis of the elliptic elastic-plastic contact model, the method to 

determine the asperity height is presented in Fig. 5.2. Instead of using the maximum height 
within the micro-contact area, the asperity height, z, is determined based on the calculated 
radius in x direction Rx and the diameter of the cross-sectional elliptical contact area in x 
direction Lx as: 
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5.2.1 Repeated stationary contact  
 
In general, the repeated contact model is similar to the deterministic contact of rough 
surfaces as was presented in Chapter 4. Therefore, the procedures used for the proposed 
repeated contact model are also similar.  
 The flow diagram of the repeated stationary contact model is presented in Fig. 5.3. 
The 3D measured surface topography z1(x,y) and z2(x,y) are used as an input for the 
contacting surfaces. The surface topography z’ 1(x,y) and z’ 2(x,y) of the contacting surfaces 
are the output from the deterministic elastic-plastic contact model. These outputs are used 
as the input for the next loading cycle. The condition where there is no plastic deformation 
anymore, i.e. there is no difference between the subsequent input and output values of the 
surface topography by following certain running-in criterion εr, is referred as the run-in 
condition.  
 
 
5.2.2 Rolling contact 
 
Many studies have been conducted to analyze the rolling contact mechanism. Based on the 
work of Merwin and Johnson [10], Bhargava et al. [11-14] modeled the rolling contact 
situation by finite element analysis. A rigid cylinder rolling on an elastic-perfectly plastic 
half-space is simulated by translating a Hertzian pressure distribution over a finite element 
mesh representing a semi-infinite body. The pressure distribution is applied incrementally 
at the first contact point and translated incrementally to the end of the rolling distance and 
then unloaded. For each consecutive cycle the same procedure is repeated by applying the 
pressure distribution incrementally, translating it incrementally, and unloading it. The 
changes in surface topography, which are represented by the deformed nodes on the finite 
element mesh, have been shown by the model. However, there are several things which 
need to be discussed further. Firstly, the pressure distribution is kept Hertzian even when 
plasticity occurs. Secondly, the deformation at the first point of contact and at the end of 
contact is higher than in the other part of the track, which is unrealistic and there is no 
experimental validation of the proposed model. Furthermore, since the analyses involve 
elastic-plastic finite element calculation and are solved in an iterative manner, considerable 
computational effort is required. To overcome the computational cost some methods were 
introduced [15-19] so that the computational efficiency is increased although they are still 
essentially numerical or non-analytic in nature.              
 According to Johnson [20] rolling is defined as the relative angular velocity 
between the two bodies about an axis lying in the tangent plane. Depending on the forces 
acting in the contacting bodies, rolling can be classified as free rolling and tractive rolling. 
Free rolling is use to describe a rolling motion in which there is no slip and the tangential 
force at the contacting point is zero. The term tractive rolling is used when the tangential 
force in the point of contact is not zero or slip is present. The present study is focused on 
the free rolling motion only. 

The free or pure rolling does not contain a tangential force and therefore this type 
of motion can be modeled by multiple-indentation of one body to another body with 
changing the indentation position. To mimic the pure rolling contact motion the range or 
the position distance between one indentation to the next indentation should be as small as 
aa 
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��������	�: Flow diagram of the calculation of repeated contacts. 
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possible. This multiple-indentation process is described schematically in Fig. 5.4. Basically, 
the model of the repeated static contact is applied to the rolling contact model, only for the 
rolling contact model, the contact position has to be shifted or translated according to the 
rolling direction for the next loading. Firstly, as can be seen in Fig. 5.4a, Body 2 is 
normally loaded by Body 1. Here, the routine to calculate the deterministic elastic-plastic 
contact of rough surfaces as was presented in Fig. 4.24 is applied, which results into a new 
topography of the surfaces when there is plastic deformation. Secondly, Body 1 is unloaded 
and shifted in rolling direction to the position over a distance equal to one pixel size and 
then again loaded against Body 2 (the movement of one pixel size is chosen because of the 
a 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
��������	: Schematic representation of a rolling contact by multiple-indentation (a) and 

its error in height, errz (b).   
 
available minimum distance from the measured surface). In this stage the output of the 
surface topography from the previous contact loading is used as input for the next 
calculation steps. These steps are repeated k times until the desired rolling contact distance 
is achieved. The method is schematically shown in Fig. 5.4a. The introduced error in height 
is shown in Fig. 5.4b and shows that the error becomes smaller when the radius of the 
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indenter increases. As an example, by using an indenter with radius Rx of 3.175 mm and the 
pixel size in x-direction px is 1 µm, due to the used magnification of the interference 
microscope, as is used in the present experiments, the error in height errz is about 0.04 nm 
which is much less than the height resolution of the interference microscope, i.e. 1 nm, so 
that in the present experiments the introduced error in height is negligible. 

The same procedures are used for the next cycle of multiple-indentations with a 
translating contact position. The cycles are repeated until there is no more change in surface 
topography of the rolling surfaces between the last cycle and the previous one which 
indicates that the contacting surfaces are run-in.   
 
   
5.3 Experimental procedure 
 
The setup, as was shown in Fig. 4.4, is utilized to perform tests for stationary repeated 
contacts and pure rolling or ‘moving’  repeated contacts. Another setup which is also 
utilized to perform rolling contact experiments is a ‘semi on-line measurement setup’  [21]. 
Photographical impression of these setups can be seen in Appendix D.   
 
 
5.3.1 Specimens 
 
Silicon carbide ceramic balls SiC (H = 28 GPa, E = 430 GPa and v = 0.17) with a diameter 
of 6.35 mm were used as hard spherical indenters. The center line average roughness Ra of 
the ceramic ball of 0.01 µm was chosen to comply with the assumption of a perfectly 
smooth surface. Elastic-perfectly plastic aluminium (H = 0.24 GPa, E = 75.2 GPa and v = 
0.34) and mild-steel (H = 3.55 GPa, E = 210 GPa and v = 0.3) were used for the rough flat 
surface specimens. The center line average roughness of the flat specimens varied from 0.7 
to 2 µm. 
 
 
5.3.2 Experimental details  
 
5.3.2.1 Repeated stationary contact experiments  
 
In principal, the test for the repeated stationary contact is the same as the test for the static 
contact in Chapter 4. Prior to any test, the spherical and flat specimens were cleaned with 
acetone and dried in air. Referring to Fig. 4.4, the cleaned flat surface is positioned in A’ 
where the interference microscope is statically located. After the 3D surface topography is 
measured by the interference microscope, the flat specimen is moved by an X-Y table for a 
predetermined distance, to point A where the loading position stands stationary. The first 
loading cycle is executed in this point by screwing down the spherical indenter until it 
touches the surface and subsequently putting the dead weight/load system in its location on 
top of the center of the spherical indenter. The contacting area was lubricated to reduce the 
friction during loading. The load is applied for 30 seconds and then unloaded by lifting up 
the loading arm manually (without screwing up the loading screw). The loading arm is very 
stiff so that the error which can be affected by lifting up the loading arm is very small. At 
the same time, by using the X-Y table, the flat specimen is repositioned to point A’ for 
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measuring the surface topography after the first loading. The flat surface is cleaned again 
with acetone, dried and subsequently the surface is acquisitioned for surface topography 
data by the interference microscope. With this last step, the first loading cycle is finished.  

To continue the test for the next loading cycle, the same procedure is applied. It 
must be noted that when the flat surface is moving from position A’ to A, the loading arm 
should be lifted up in order to avoid a sliding action between the spherical indenter and the 
flat surface. When position A is reached, the load is gently reapplied. To investigate the 
change of surface topography accurately for the sequence loading cycles, the matching and 
stitching was applied (see Appendix C). All the stitched images from every loading cycle 
are matched with the first stitched images. This was done separately by a personal 
computer.             
 
 
5.3.2.2 Repeated moving contact experiments 
 
The setup for the repeated moving contact experiments is an extension of the repeated 
stationary contact setup. The only difference between those setups is the loading stage. In 
the repeated moving contact setup, when the flat surface specimen is positioned in point A, 
the loading is performed more than once and the loading position is changed for every 
loading. 
 First, the multiple-indentation distance should be determined, say xr. From point A 
the flat specimen is moved along xr/2 in opposite x direction according to the ‘rolling’  
direction by the X-Y table where the indentation of the flat by the sphere is started. After 5 
seconds, the loading arm is manually lifted for unloading and then the flat is moved 
forward by the X-Y table over a distance of 1 pixel size in the rolling direction and then 
starts loading again. This process is repeated until the distance xr is achieved. If the final 
loading position is finished, the loading arm is lifted up and the flat specimen is moved 
backwards over a distance xr/2 so that the position A is reached. Subsequently, with the 
loading arm still in the lifting up position, the flat specimen is moved to position A’ for 
measuring surface roughness. With this step, the first loading cycle of repeated moving 
contacts is finished. The same procedures are applied again for the next cycle.              
  
 
5.3.2.3 Repeated rolling contact experiments 
 
Another setup to perform the rolling contact experiments is the semi on-line measurement 
setup [21]. Details of the arrangement of the setup are presented in Fig. 5.5. The spherical 
indenter is held by the same loading arm as in the repeated stationary and moving contact 
setups. A disk is mounted on a rotating table which is controlled by a stepper motor. The 
loading arm and the rotating table are positioned on the X-Y table such that the spherical 
indenter is located on one side of the disk, whilst the interference microscope is positioned 
on the other side of the disk and stands separately from the X-Y table. The setup allows a 
range for the diameter of the disk specimen from 70 to 100 mm. 
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��������	�: Semi on-line measurement setup. (a) Main view, (b) isometric view of (a) 

without interference microscope and (c) top view of (b).   
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In order to make a rolling condition of the sphere or ball possible, a special holder 
was designed as is shown in Fig. 5.6. This holder consists of three major parts: a horizontal 
slider, a clamping unit and miniature ball bearings. The maximum load which can be borne 
by the miniature ball bearings is about 7 N and therefore the maximum load which can be 
applied to this setup is less than 7 N. The clamping unit is designed to increase the 
capability of the holder by allowing different diameters of the ball. The diameters of the 
ball which can be used in this holder range from 6 to 12 mm. To adjust the relative position 
between the center of the ball and the center of the dead weight position, the horizontal 
slider is moved. The aim of the adjustment is to minimize the inclining effect of the loading 
system.    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

��������	�: Rolling ball holder. 
 
 Sequences of the rolling contact measurement in this setup according to [21] are as 
follows. The relative position between the ball specimen and the disk is fixed on the X-Y 
table. A scratcher is positioned lower than the ball specimen. The loading arm is screwed 
down until the tip of the scratcher touches the disk surface and then the dead load is used, 
which is enough to indent the disk surface. The disk is rotated until the scratched disk 
surface appears. The X-Y table is utilized to move the disk so that the other side of the 
scratched disk is located under the interference microscope. The relative position of the ball 
specimen, the center of the disk and the interference microscope are set in a line of the x or 
y axis. When such positions are achieved, the scratcher is taken off and the X-Y table is 
moved in the opposite x or y direction, along the predetermined distance between the 
scratcher and the ball specimen. By this procedure, the disk surface which was in contact 
with the ball specimen will pass the point where the interference microscope is positioned. 
Load is applied by using the same procedure as was discussed earlier and the sample of the 
surface is measured by the interference microscope. For a one cycle measurement the disk 
is rotated for 360 degrees, stopped and then the surface roughness is measured. There are 
some disadvantages using this procedure such as the difficulty in determining the distance 
between the center of the ball specimen and the tip of the scratcher. The difficulty is the 
positioning of the ball specimen, the scratcher and the interference microscope in one line. 
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Moreover, the disk specimen is damaged by the scratcher which could be used for another 
experiment. Therefore, in the present experiments a modified procedure is applied. 
 In the present rolling experiments the scratcher is excluded. Measurements in the 
surface topography in the area of the disk surface should be done nearly at the same spot 
before and after rolling contact. A sufficient load which can deform the surface plastically 
is applied and then the disk is rotated with a low angular velocity. For a certain distance of 
rolling contact, the system is unloaded so that there is still a remaining area which was not 
in contact. The disk is rotated so that the plastic deformed surface stays at the opposite side 
of the ball indenter and is then moved by the X-Y table to position the interference 
microscope on the plastic deformed track. The disk is rotated again to measure the original 
area of the disk. When this arrangement is achieved, the same procedure is used as was 
described above. The velocity of the present experiment is about 7 mm/s and the system is 
unlubricated. Eldredge and Tabor [22] have shown that in the rolling contact condition its 
behavior is the same for the velocity range of 0.5 to 100 mm/s. Experiments on a new fresh 
surface of the same disk can be performed by adjusting the relative position between the 
ball specimen and the disk in x or y direction.           
 
 
5.4 Results and discussion 
 
5.4.1 Repeated stationary contact  
 
For the repeated stationary contact experiments isotropic and anisotropic aluminium 
surfaces and an anisotropic mild-steel surface were used. The r.m.s. roughness is 
respectively 1.3 and 1.4 µm for the isotropic and the anisotropic aluminium surfaces and 
0.7 µm for the anisotropic mild-steel surface. For each loading a load of 0.2 N has been 
applied to the aluminium contact system and 2.5 N to the mild-steel contact system. Fig. 5.7 
to Fig. 5.12 show the results for the aluminium specimen where the local contact condition 
dominantly operates in the fully plastic contact regime.  

Elastic perfectly plastic aluminium was used (see also Appendix B for the fully 
plastic single asperity experiments) as flat isotropic and anisotropic surface specimens. The 
hardness constant for full plasticity ch of this material was 0.71 and the inception of fully 
plastic deformation ω2 equals 80 times the inception of the deformation where the first 
yield occurs ω1, or cA = 160. Figure 5.7a shows the initial isotropic surface which was in 
contact with a hard smooth ball. A load of 0.2 N was applied to the contact. The position of 
the asperities in contact due to the applied load is presented in Fig. 5.7b. The location (not 
size) of the corresponding asperities is represented by dot markers in this figure. Together 
with the r.m.s. roughness value of Rq is 1.3 µm and its material properties yields a Cm value 
for the criterion of Eq. (4.12) of 0.16 which means that deformation of the surface on 
asperity level is expected.       
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                                                (a)                                                                         (b) 
   
��������	�: Isotropic aluminium surface before contact is applied (a) and location (not 

size) of the corresponding asperities (b). 
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                                              (a)                                                                             (b) 
 

��������	�: Contact area of the isotropic aluminium surface for n = 1: (a) model and  
(b) experiment. 
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(b) 
 

��������	�: Profile of the matched and stitched isotropic aluminium surface:  
(a) x-profile at y = 120 µm and (b) y-profile at x = 129 µm. 
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                                                (a)                                                                         (b) 
   
��������	
�: Anisotropic aluminium surface before contact is applied (a) and location 

(not size) of the corresponding asperities (b). 
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��������	

: Contact area of the anisotropic aluminium surface for n = 1: (a) model and 

(b) experiment. 
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(b) 
 

��������	
�: Profile of the matched and stitched anisotropic aluminium surface:  
(a) x-profile at y = 118 µm and (b) y-profile at x = 126 µm. 
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The contact area prediction by the model for the cycle n = 1 is depicted in Fig. 
5.8a. Impression of the size of the geometry of the asperities is given in this figure. The 
experimental results of the contact area from the contact system are presented in Fig. 5.8b. 
As can be seen, the model predicts the contact area very well. More insight in the model 
prediction and the measured results may be seen in the plot of the asperities in x and y 
direction as presented in Fig. 5.9. The model predicts the change of the surface topography 
accurately. Experimental results show that there is almost no difference between the profile 
for cycle 1, 2, 3, 10 and 20. In the first loading cycle the asperity deforms elastic, elastic-
plastic or fully plastic depending on its geometry, location and height. The contact area is 
developed to support the load. When the load is removed, plastic deformation will modify 
the surface geometry due to elastic-plastic and fully plastic deforming asperities which 
normally increase the degree of conformity to the counter-surface (indenter). If the same 
load is reapplied at exactly the same position, the same contact area as for the first loading 
will be developed. In this second loading the asperities deform elastically as a result of the 
residual stresses and geometrical changes induced by the first loading, therefore there is no 
change of the surface topography or of the contact area. Residual stresses will increase the 
yielding stress and the change of the geometry will reduce the level of applied stresses. In 
the present model the change of the surface geometry is the only factor. Since the same 
loading condition is applied for cycle 1, 2, 3, 10 and 20 the same phenomena are observed.                
 Results of the anisotropic aluminium surface are presented in Fig. 5.10 to Fig. 
5.12. The initial anisotropic aluminium surface and its asperity location is shown in Fig. 
5.10. The same load as was applied to the isotropic aluminium surface is used for the 
anisotropic surface. Figure 5.11 presents the result of the contact area of the model 
prediction and of the experimental investigation for the first cycle. From this figure it can 
be seen that the surface is dominantly represented by a single elliptic asperity. With a r.m.s. 
roughness Rq value of 1.4 µm, it yields a Cm value of 0.15 so that asperity deformation is 
expected. This is confirmed by the experimental results of Fig. 5.12 where the plot of the x 
and y profile are drawn. Results for cycle 1, 2, 3, 10 and 20 are similar to the isotropic 
aluminium surface i.e. there are almost no differences in the contact area and the surface 
topography. Small deviations between the model prediction and the experimental results are 
observed for the y profile in Fig. 5.12b. This behavior will be discussed further in Chapter 
6.  
 Results of the repeated stationary contact for the mild-steel material, where most 
of the local contacts operate in the elastic-plastic contact regime, are presented in Fig. 5.14 
to Fig. 5.17. In the elastic-plastic contact regime, instead of truncating the asperity by the 
hard indenter as for the case in the fully plastic contact regime, the shape of the asperity 
after unloading is determined as follows. Suppose the radius of the asperity in the x-
direction is Rx, the normal plastic deformation as was defined in Eq. (3.84) is ωuep after 
loading for an interference ω, the corresponding radius after unloading is defined by: 
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 (5.2) 

 
The new radius of the asperity after unloading as was defined in Eq. (5.2), is derived based 
on a simple analysis as presented in Fig. 5.13. 
 



 

 

125

 
 
 
 
 
 
 
 
 
 
 
 
 

��������	
�: Profile change before and after loading. 
 
Results for the mild-steel specimen are similar to the results for the aluminium specimen. 
The r.m.s. roughness of the mild-steel is about 0.7 µm, this combined with a 2.5 N load 
results into a Cm value of about 0.11 so solely asperity deformation is expected. The contact 
area prediction of the model in the elastic-plastic contact regime as shown in Fig. 5.15(a) is 
a bit larger than the measured one; this is caused by the overestimation of the contact area 
by expression (3.85), especially in the regime close to elastic regime. Small differences 
were also found in the profiles between the model and the experimental results, Figs. 5.16 
and 5.17.  
 In general, it can be concluded that for the repeated stationary contact, the 
proposed elastic-plastic contact model is able to predict the contact area and the surface 
topography change for both isotropic and anisotropic surfaces accurately.       
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��������	
: Anisotropic mild-steel surface before contact is applied (a) and location (not 
size) of the corresponding asperities (b). 
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��������	
�: Contact area of the anisotropic mild-steel surface for n = 1: (a) model and 

(b) experiment. 
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��������	
�: x-profile of the matched and stitched anisotropic mild-steel surface at 
 y = 110 µm. 
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��������	
�: y-profile of the matched and stitched anisotropic mild-steel surface at 
 x = 108 µm. 

 
 
5.4.2 Repeated moving contact 
 
The contact condition for the repeated moving contact is the same as was used in the 
repeated stationary contact. The roughness value is almost the same and therefore solely 
asperity deformation is to be expected in this case. 
 The initial aluminium surface in the repeated moving contact experiment is 
presented in Fig. 5.18a, and Fig. 5.18b shows the location of the corresponding asperities as 
well as the sample area of the repeated moving contact and the moving direction. Results of 
the contact area prediction and measured contact area of aluminium after the first cycle are 
presented in Fig. 5.19a and Fig. 5.19b, respectively. A good prediction is observed from 
these figures. Figure 5.20 to Fig. 5.22 show the good ability of the model to predict the 
change of the surface topography for a repeated moving contact for respectively cycle 1, 2 
and run-in cycle 3. A small deviation between the model and the experiment for the run-in 
cycle (n = 3) is observed, because the surface show a change due to volume conservation. 
The present model does not take such phenomenon into account.  
 Similar results are found in the mild-steel surface case. Plots of the theoretical 
model prediction and the measurement in the elastic-plastic contact regime are presented as 
profiles for cycle 1 and for run-in cycle 5 in Fig. 5.23 and Fig. 5.24, respectively. Small 
deviations between the model and the measurements are also found in the repeated elastic-
plastic moving contact as was discussed earlier in the elastic-plastic repeated stationary 
contact.     
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                                              (a)                                                                             (b) 
 
��������	
�: Initial aluminium surface for the repeated moving contact experiment (a) 

and location (not size) of the corresponding asperities with the rolling or  
moving sample direction (b). 
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�: Contact area of aluminium surface for n = 1: (a) model and (b) experiment. 
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��������	��: Profile of the matching and stitching result of aluminium surface at  
y = 155 µm for cycle n = 1.  
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��������	�
: Profile of the matching and stitching result of aluminium surface at y = 155 
µm for cycle n = 2.  
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��������	��: Profile of the matching and stitching result of aluminium surface at  
y = 155 µm for cycle n = 3, 4, and 5.  
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��������	��: Profile of the matching and stitching result of mild-steel surface at  
y = 160 µm for cycle n = 1. 
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��������	�: Profile of the matching and stitching result of mild-steel surface at  
y = 160 µm for cycle n = 5, 7 and 9. 

 
 Compared to the repeated stationary contact, the repeated moving contact exhibits 
the development of the shape of the contact area and the asperity deformation. These 
phenomena can be explained as follows. A deformable smooth surface in contact with a 
rigid sphere with high load is considered for explanation purposes, see Fig. 5.25. For the 
loading-unloading of a static indentation, the developed plastic contact area is circular (Fig. 
5.25a). For the rolling contact situation, when rolling starts, plastic flow leads to the 
permanent groove in the rolling track direction. With successive traversals of rolling the 
track width and the normal plastic deformation gradually increases. This occurs because a 
line or wide elliptical contact is formed by the contact between the groove in the surface 
and the sphere and it is not sufficient to support the applied load. This process continues 
until a state of equilibrium is reached where no appreciable change in the track width and 
normal plastic deformation occurs. This equilibrium state is referred to as the run-in state of 
the contacting surfaces. In the absence of work-hardening, this effect of increasing track 
width or contact area (change of contact geometry) is the main factor influencing the 
equilibrium state. Elredge and Tabor [22] showed that when the equilibrium of the plastic 
deformation is reached the coefficient of friction also reaches a stable and lower value 
which implies that the running-in period is finished so that the contacting surface starts to 
operate in the steady state period.   
 
 
5.4.3 Repeated rolling contact  
 
The same contact condition as was used in the repeated moving contact was used in the 
repeated rolling contact. Results of the rolling contact experiment, along with the model 
aaaa 
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��������	��: Development of contact area during plastically rolling contact. (a) Static 

contact (b) run-in condition and (c) contact area and track width development.  
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��������	��: Profile of the matching and stitching result of aluminium surface at  
y = 160 µm (perpendicular to the rolling direction). 
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��������	��: Profile of the matching and stitching result of mild-steel surface at 
 y = 158 µm (perpendicular to the rolling direction). 

 
prediction for the aluminium and mild-steel surfaces are presented in Fig. 5.26 and Fig. 
5.27, respectively. It can be seen from Figs. 5.26 and 5.27 that there is much deviation 
between the predicted run-in profile and the measured run-in profile. The model predicts 
the surface to be run-in at cycle n = 3 for the aluminium surface and at cycle n = 4 for the 
mild-steel surface, but the experimental result show that the aluminium surface is run-in at 
cycle n = 2400 and the mild-steel surface is run-in at cycle n = 1250. The magnitude of the 
plastic deformation is also significantly different. Interestingly, even with the very high 
plastic deformation, bulk deformation is not observed as predicted. The velocity of this 
setup, 7 mm/s, is much higher compared to the repeated moving contact where loading and 
unloading is executed every 5 seconds for 1 µm translation. This high velocity may 
contribute to the wear of the surface. This phenomenon has been reported by Morgan [23] 
where a smooth deformable plate is rolled by a rigid smooth ball. Results showed that for 
the same number of over-rolling cycle, plastic deformation for the higher frequency (higher 
velocity) is higher than the lower one, which is also observed in the present experiment. 
 To investigate the presence of slip, an experiment was done by measuring the 
number of revolution of the ball and the total distance of the track on the disk. For the 
experiments with an aluminium surface, high slip was observed. Every 10 revolutions of 
the disk (10πDtrack � 2.89 m) the ball rotates for about 50 revolutions (50πDball � 0.99 m). 
The rolling condition for the mild-steel surface is much better. For the first 10 rotations of 
the disk, the number of revolution of the ball is about 143 (143πDball � 2.85 m). However, 
when the number of over-rolling increases (the surface start to conform) the amount of slip 
increases. This was observed by measuring the number of revolution of the ball in the range 
of 40 to 50 cycles. In this range, the number of revolution of the ball is about 140 
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(140πDball � 2.79 m) which is lower than the first 10 revolutions of the disk. It can be 
concluded that in this experiment setup, the pure rolling contact condition is hardly 
achieved.     
 
 
5.5 Concluding remarks 
 
In this chapter, study of the repeated stationary contact, the repeated moving contact and 
the rolling contact was carried out theoretically and experimentally. The experimental 
results were compared with the theoretical predictions and it was found that the theoretical 
model predicts the contact area and the change of the surface topography due to plastic 
deformation for the repeated stationary contact and the repeated moving contact very well. 
It was also shown that the run-in cycle of the contacting surface can be well predicted by 
the developed model.    
 For the rolling contact experiment the model underestimates the contact area and 
the plastic deformation. Wear is expected to be the main factor which affects the deviation 
from the model.  
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Chapter 6 
 
Conclusions and recommendations 
 
 
 
 
 
 
 
 
This chapter summarizes the main conclusions of the previous chapters and provides a 
number of open problems for future research based on the work as described in this thesis.   
 
 
6.1. Conclusions 
 
Chapter 2: Running-in: a literature review 
 
���    Running-in is a very complex phenomenon and most of the studies have been 

conducted experimentally. 
���    Most of the time theoretical studies performed on running-in are statistical approaches, 

assuming a Gaussian distribution. 
���    Plastic deformation in normal direction and mild wear are the two dominant 

mechanisms during running-in of lubricated contacts. The plastic deformation in 
normal direction is more dominant than the mild wear and is expected to be the key 
factor; therefore, in the present study the analysis is focused on the plastic deformation 
due to normal loading and omitting the wear mechanism. In this case the pure rolling 
contact situation is the best selection. To study the plastic deformation due to normal 
loading, a contact model is needed.       

 
 
Chapter 3: Elastic-plastic single asperity contact 
 
���    An asperity micro-contact model was considered due to its analytical nature. In order 

to select the best asperity contact model available in literature, experiments have been 
performed. Results showed that there is no agreement between the measured 
deformation and the prediction by the models. Therefore, a new contact model should 
be developed. 
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���    A new elliptic elastic-plastic asperity contact model has been developed based on the 
knowledge gained from experimental investigation. The developed model was also 
examined by the experimental results presented in literature. The contact model 
predicts the contact parameters very well. 

���    An unloading elliptic elastic-plastic asperity contact model has been developed as an 
extension of the developed asperity contact model. The model predicts the elastic 
recovery and plasticity of the deformation and contact area after unloading. The model 
agrees well with the measured plastic deformation and plastic contact area.  

 
 
Chapter 4: Deterministic elastic-plastic multi asperity contact 
 
���    Running-in changes the surface roughness height, hardly changes the surface 

wavelength and bulk deformation of the contacting surfaces has to be avoided since it 
changes the macro-geometry. Therefore, a contact condition where the deformation 
occurs on asperity level must be designed. A theoretical criterion to predict the 
deformation behavior of the contacting surfaces has been developed. A good 
correlation was found between the developed deformation criterion and the performed 
experimental results. The criterion is simple and is easy to be used for practical 
engineers.  

���    The local change of the surface topography is the point of interest of the present study 
which cannot be employed in the statistical contact model of rough surfaces.  Instead 
of the statistical contact model, a deterministic elliptic elastic-plastic contact model of 
rough surfaces has been constructed by utilizing the developed single asperity contact 
model. This model excludes the bulk deformation. Geometrical contact parameters 
such as height and curvatures of the asperities are determined locally as the input of the 
model. The summit method is widely used so far in order to determine such parameters 
rather than the volume conservation method. The superiority of the later method to the 
former has been demonstrated. The model has been applied to the real contact of rough 
surfaces and results show that the model simulates the change of the surface 
topography very accurately. Deviation between the model prediction and the measured 
plastic deformation and plastic contact area is very small.      

 
 
Chapter 5: Running-in of rolling contacts 
 
���    The developed deterministic elliptic elastic-plastic contact of rough surfaces was 

extended to the repeated contact situation. Three types of repeated contact were 
studied, namely the repeated stationary contact, the repeated moving contact and the 
rolling contact.  

���    For the repeated stationary contact model, the contacting surfaces are loaded and 
unloaded with the same load and at the same location. The model has been verified by 
experimental results and was found to be in a good agreement. Results also show that 
the surfaces are run-in after the first cycle of loading-unloading in this type of repeated 
contact.   

���    A running-in model was developed based on repeated moving contacts. In this model, 
the contacting surfaces are loaded, unloaded, translated over a distance and then again 
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loaded, unloaded, translated and so on until a certain ‘rolling’  distance is achieved. 
Two types of experiments were utilized for verifying the model, i.e. the repeated 
moving contact setup and the rolling contact setup. In the repeated moving contact 
setup the contacting surfaces are loaded and unloaded exactly as was described by the 
proposed model, whilst in the rolling contact setup a stationary rolling surface was in 
contact with a moving surface. Experimental results show that the model predicts the 
surface topography changes and the run-in cycle for the repeated moving contacts very 
well, whilst this is not the case for the rolling contact setup. Wear was expected to be 
the main factor influencing the experimental results.  

    
 
6.2. Discussion 
 
In this section two interesting findings related to this thesis will be discussed, namely (1) 
plastic deformation of two deformable contacting bodies and (2) plastic deformation for a 
very high load. 
 Johnson and Shercliff [1] hypothesized that when two contacting asperities have 
the same hardness, the depth of plastic deformation is expected to be the same for each 
body, independent of the geometries used. Based on this hypothesis, experiments have been 
performed on the contact between two hardened steel balls (H = 8.3 GPa, E = 210 GPa and 
v = 0.3). A number of contact pairs with different ratio of radii of the contacting balls have 
been selected and the results are presented in Fig. 6.1. The method to determine the amount 
a 
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��������	
: The ratio of plastic deformation as a function of the ratio of radii of the 
contacting bodies. � experimental results and the fitting curve (dash-line).  
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of plastic deformation is the same as was applied in Section 3.5 of Chapter 3. Obviously, it 
is observed that even in the bodies in contact having the same hardness, the degree of 
plastic deformation of the bodies in contact differs significantly, which contradicts the 
hypothesis of [1]. The ratio of the plastic deformation of the bodies in contact ωp1/ωp2 
decreases as the ratio of the radii of the bodies R1/R2 increases. The body with a higher 
contact radius deforms plastically less than the body with a lower contact radius. This 
phenomenon may be explained by the flow of displaced material of the contacting bodies, 
see Fig. 6.2. Here, the contact between a flat half-space and a ball is considered. When a 
high load is applied, such that plastic deformation occurs, the material of the ball near the 
contact area is radially free displaced (lateral). This does not happen to the material of the 
half-space, because the displacement of the material due to the plastic flow is confined by 
the elastic-plastic bulk. Consequently, the plastic deformation for the ball is higher than for 
the half-space.      
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
��������	�: Material displacement (schematically) of the contact between two deformable 

bodies.  
 
 
 The second discussion is about the deformation behavior of the asperity at the very 
high load. An elastic-perfectly aluminium (H = 0.24 GPa, E = 75.2 GPa and v = 0.34) 
surface has been compressed repeatedly with a load of 1 N by a smooth hard SiC ceramic 
(H = 28 GPa, E = 430 GPa and v = 0.17) ball with radius of 5 mm. Results are presented in 
Fig. 6.3 along with the model prediction as was discussed in Chapter 5. As can be seen, the 
model predicts the change of the surface topography well for the asperities which are far 
away from the center of the spherical (ball) indenter, but not for the asperity close to the 
center of the indenter. This implies that the model is valid for moderate full plasticity and 
starts to deviate when it operates deeply in the full plasticity region. In the deep full 
plasticity region the model overestimates the plastic deformation. It is clear from the figure 
that the very high loaded asperity in the center, exhibits volume conservation behavior. The 
deformed material is displaced laterally of the asperity, which leads to the increase of the 
contact area and as a result the applied pressure decreases. The volume conservation 
phenomenon of the deformed asperity is not included in the present model, therefore the 
aaa 
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��������	�: Change of the aluminium profile due to repeated simple contacts.  
 
deviation is observed for the very high load. The behavior of the contact operating deeply 
in the full plasticity region has also been studied by Mesarovic and Fleck [2] by finite 
element analysis. They showed that for the very high load, the mean contact pressure starts 
decreasing. This regime, according to them, is referred to as the finite deformation regime.           
 
 
6.3. Recommendations 
 
The following offers several open problems which may be explored for future study. 
 
���    Based on the previous discussions, further investigation into the plastic deformation of 

the contact between two elastic-plastic deformable bodies should be conducted.  
���    Deep into the fully plastic regime or finite deformation regime, the behavior of the 

asperity shape and the mean contact pressure are changing. More research which copes 
with these phenomena is needed. Furthermore, strain hardening should be taken into 
account.  

���    Incorporating wear will extend the rolling running-in model to sliding or rolling/sliding 
running-in.   
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Appendix A 
 
Critical interference 
 
 
 
 
 
 
 
 

As was mentioned in Chapter 3 the critical interference, ω1-KE, of the KE model 
[A1] is defined in terms of contact interference ω as: 
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If the value of KKE = 0.6 then Eq. (A.1) becomes the critical interference for the CEB model 
[A2] and the ZMC model [A3]. 

The von Mises failure criterion with zero shear stresses has the following form: 
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where σ1, σ2 and σ3 denote the three principal stresses, k represents the material yield stress 
in simple shear and Y represents the material yield stress in simple tension or compression. 
According to Johnson [A4], the principal stresses for a Hertzian contact along the z-axis 
(the axis that passes through the center of the contact area) can be expressed as: 
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where s = z/a, v is the Poisson’ s ratio of the material, a is the radius of the contact area and 
p0 is the maximum Hertzian contact pressure. In this case, σr, σθ and σz are the principal 
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stresses. Substituting Eqs. (A.3) and (A.4) into Eq. (A.2) and rearranging give the following 
expression: 
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Since p0 in Eq. (A.5) does not depend on s, the point where yield will occur first is where f, 
Eq. (A.6), has its maximum. s*, the point where the first yield occurs, is a function of v, 
rather than a function of p0.  s

* can thus be found by solving 
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At incipient yield k1

2 = Y1
2/3 so that Eq. (A.5) can be rewritten as: 
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Rearranging Eq. (A.8) yields: 
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According to the work of Tabor [A5], the hardness H of a metal in simple compression can 
be related to its yield stress Y by H � 2.8Y, hence Eq. (A.10) can be expressed as: 
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where K is the maximum contact pressure factor, or: 
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*),(8.2
1

svf
K =  (A.12) 

 
This equation is solved numerically for a range of Poisson’ s ratios to find the location z at 
initial yielding. The locations of the maximum contact pressure were derived by [A6] using 
an approximate expression, so that K in Eq. (A.12) becomes: 
 

vK KE 41.0454.0 +=  (A.13) 
 
Similarly, [A7] used the curve fitting method to define K as: 
 

21943.03141.04645.0 vvKv ++=  (A.14) 
 

JG [A8] proposed that the relation between the hardness of the material with its 
yield stress is not constant, but depends on the contact interference. Accordingly, [A8] used 
yield stress as a parameter rather than hardness, because yield stress is constant. Similar 
procedures were used and the KH value in Eqs. (A.1) and (A.11) are replaced by: 

 
)736.0exp(295.1 vCY =  (A.15) 
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Appendix B 
 
Comparison between the proposed asperity 
contact models with the experimental data  
 
 
 
 
 
 
 
 
B.1. Fully plastic contact 
 
B.1.1 Present experiments  
 
Results of the contact between aluminium spheres against hard SiC flats are presented in 
Fig. B.1 to Fig. B.4. In the fully plastic contact regime, profile of the deformed spheres 
showed almost a flat following the shape of the flat indenter.  

Figure B.1 shows the profile after indentation for a normal load of 206 N. This 
typical form applies for all the experimental results. Therefore, the plastic contact area (A = 
2πRω) is just the truncation of the sphere as is shown in Fig. B.2. For aluminium, the mean 
contact pressure in the fully plastic contact regime in the present experiments is about 
0.71H, see Fig. B.3. These results confirm the experimental work of Chaudhri [B4] where 
the mean contact pressure in the fully plastic contact regime for elastic-plastic aluminium 
spheres with a diameter of 3 mm in contact with a sapphire flat is about 0.69H. The plot of 
the contact area as a function of the load for the aluminium case can be seen in Fig. B.4.  
 
 
B.1.2 Experiments by Johnson 
 
Normal compression experiments of Johnson [B1] were performed with two equal copper 
spheres (H = 0.86 GPa, E = 115 GPa, v = 0.34) of 127 mm diameter. The stress-strain 
behavior of the work-hardened copper specimens is shown in Fig. B.5. It can be seen from 
this figure that the copper shows an elastic-perfectly plastic material behavior. 
      Figure B.6 presents the results of the mean contact pressure as a function of the 
contact area, which were obtained by Johnson’ s experiment, along with the results from the 
CEB model, the AF model and the JG model as were discussed in Chapter 3. The dashed 
line is the best fit for the AF model for the mean contact pressure p = 0.79H. Similar 
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analysis is presented in Fig. B.7 for the plot of the contact area as a function of the contact 
load.  
 
 
B.1.3 Experiments by Chaudhri 
  
Chaudhri [B2] has performed a compression test on a copper sphere (H = 1.32 GPa, E = 
120 GPa, v = 0.37) of 1.5 mm radius in contact with a sapphire plate (H = 190 GPa, E = 
430 GPa, v = 0.26). The stress-strain curve of the work-hardened copper in compression is 
depicted in Fig. B.8.        

The comparison of Chaudhri’ s experimental results with the proposed asperity 
contact models is presented in Fig. B. 9 and Fig. B.10, for the mean contact pressure versus 
the contact area and the contact area versus the contact load, respectively. The dashed line 
is the best fit for the AF model for the mean contact pressure p = 0.68H.  
 
 
B.2. Elastic-plastic contact 
 
The setup for the elastic-plastic contact experiments is as was mentioned in Chapter 3. The 
proposed elastic-plastic asperity contact models are compared. The results of Tabor’ s 
experiments [B3] are presented in Fig. B.11 and B.12 and the results of Chaudhri’ s 
experiments [B4] are presented in Figs. B.14 to B.17. In these figures the models of JG, KE 
and ZMC are plotted, as well as the experimental results. Figure B.13 shows the schematic 
drawing of the arrangement for observing and measuring the contact area directly from 
Chaudhri’ s test.  
  
 
B.3. Conclusions 
 
The present experiments show that for the contact between aluminium spheres and rigid 
flats, the mean contact pressure in the fully plastic contact regime results in about 0.71H.  
Whilst the experimental results of Johnson [B1] and Chaudhri [B2, B4] are best fitted with 
the simple relation: p = chH, in which ch = 0.79, 0.68 and 0.69 for the copper/copper 
system, the work hardened copper/sapphire system and the aluminium/sapphire system, 
respectively. ch is the coefficient of the mean contact pressure in the fully plastic contact 
regime to the hardness. 

If the mean contact pressure in the fully plastic contact regime is assumed to be as 
chH, the model of ZMC predicts the contact behavior best among the other models in the 
elastic-plastic contact regime.     
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��������	�: Compression tests of hard-drawn copper specimens [B1]. 
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��������	�: Mean contact pressure vs contact area of copper spheres. � Johnson’ s  
experimental results [B1]. 
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��������	�: The stress-strain curve of the work-hardened copper in 
 compression [B2]. 
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��������	�: Mean contact pressure vs contact area of copper spheres. � Chaudhri’ s 
experimental results [B2]. 
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�: Contact area vs contact load of copper spheres. � Chaudhri’ s experimental 

results [B2]. 
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: Non-dimensional mean contact pressure vs contact area of steel spheres. � 
Tabor’ s experimental results [B3]. 
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�: Contact area vs contact load of steel spheres. � Tabor’ s experimental results 
[B3]. 
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��������	
: Non-dimensional mean contact pressure vs contact area of phosphor-bronze 
spheres. � Chaudhri’ s experimental results [B4]. 
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�: Contact area vs contact load of phosphor-bronze spheres.  
� Chaudhri’ s experimental results [B4]. 
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��������	
�: Non-dimensional mean contact pressure vs contact area of brass spheres.  
� Chaudhri’ s experimental results [B4]. 
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�: Contact area vs contact load of brass spheres.  
� Chaudhri’ s experimental results [B4]. 
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Appendix C 
 
Matching and stitching 
 
 
 
 
 
 
 
 
C.1. Introduction 
 
The relation between surface micro-geometry and its function is very important. For 
characterizing the surface micro-geometry, the statistical approach is widely used. 
However, in order to understand the effect of surface micro-geometry on its performance, it 
is important to evaluate not only the surface micro-geometry itself, but also the changes in 
performance as the surface micro-geometry changes in time. It is thus necessary to compare 
the changes of surface micro-geometry before and after a period of time or throughout the 
course of a process.  

Omitting the concern of measurement position, it is relatively easy to study the 
changes in micro-geometry before and after a running process. However, studying the 
characteristics of the changes in micro-geometry at the same position is more desirable, 
especially when studying the process of change. This makes it possible to explore the 
detailed microscopic phenomena. It is necessary to establish special techniques to ensure 
measuring and observing at the same position the changes of the micro-geometry and its 
characteristics.  

Wear and plastic deformation measurements have been presented by [C1, C2] on 
the comparison of local surface heights. Based on the image processing technique, they are 
able to measure and characterize wear of very wear-resistant materials like hard coatings. 
The information about local height differences at the surfaces caused by wear or material 
transfer is given by using this method. Basically, the method can be described as finding the 
best correlation and subsequently subtracting two 3D surface measurements before and 
after the experiment at the same spot. The 3D surface measurements are made by using a 
non-contacting interference microscope. The method proved to give good results but its 
capability is limited by hardware, in this case the capability of the optical interference 
microscope. In most of the practical situations it is not possible to get a detailed image of a 
complete section across a wear track in one measurement. Since the detailed information 
across the wear track is very important, the hardware limits must be overcome by software. 
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Sloetjes et al. [C3, C4] proposed a new technique, by matching and stitching a 
number of small but detailed images together from sequence measurements. The detailed 
method can be seen further in the next section.      
 
 
C.2 Matching and stitching 
  
C.2.1 Basic concept 
 
The matching process of two images can be defined as aligning or repositioning the 
overlapping part of two successive images. One of the approaches which can be followed to 
obtain the ‘best fit’  between the matching images is by identifying certain distinctive 
features such as sharp edges or corners, contours, et cetera. However, such an approach is 
generally difficult to apply in roughness surface images, due to its stochastic properties. De 
Rooij and Schipper [C2] used the template method and obtained very good results for 
matching the roughness images. This method extracts a certain neighborhood (template) 
from one image and determines the position which gives the best fit to the other image. 
Instead of using several small templates [C2], the complete region of overlap is used by 
[C3, C4].   
 In order to get a detailed image of a complete section across a wear track, the 
stitching process has to be performed. Several measurements are taken in the stitching 
process and each one has a certain overlap area with the previous one. For every stitching 
of the subsequent two images, the mutual translation and rotation has to be determined 
based on the overlapping area. This process is referred to as matching. Once all images are 
matched, one large image is created to complete the stitching process (Fig. C.1). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

��������	
: Matching and stitching process. 
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C.2.2 Preprocessing 
 
Data obtained by optical interferometer generally suffers some errors such as noise, outliers 
and bad/missing points. Before performing the matching and stitching process, the errors 
should be reduced as much as possible. Reduction of noise can be realized by simply 
applying a low pass filter. The height data for missing points are determined by using an 
interpolation procedure which uses measured neighboring points. A detailed description of 
the preprocessing step can be found in [C3].   
 
 
C.2.3 Correlation 
 
It is very difficult to maintain exactly at the same position of subsequence measurements. 
Therefore the correlation between the images is needed. In a 3D coordinate system, the 
mutual fit consists of three translations and three rotations (Fig. C.2) which yields a 6 
degrees of freedom (DoF) correlation function.  

 
 

 
 

��������	�: Coordinate systems and DoF’ s [C3]. 
 
In general, a correlation function can be written as: 

 

( ) ( )�=∆∆∆ dF
N

cor izyxzyxi
1

,,,,, θθθ  (C.1) 

 
where the subscript i is the correlation function type, N is the number of data points and 

  
( ) ( )111222 ,, yxzyxzd ttt −=   (C.2) 

 
The superscript t indicates a transformation of the second image for the specific values of 
the DoF’ s into the first image coordinate system. The difference or distance d is the 
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subtraction between the first and the subsequent image. There are many types of correlation 
functions (detailed information can be found in [C4]).  

The least square correlation function minimizing the sum of the square of the 
distance: 
  

( ) 2ddFlsq =   (C.3) 
 
while the weighted distances correlation function summing the weighted distance of the 
two overlapping images: 

  

( )
�
�

�

�

�
�

�

�

�
�

	




�
�

�


−=

2

,2
1

exp
diffq

wgt R
d

dF   (C.4) 

   
where Rq,diff is the Rq (r.m.s.) of the difference image. It was shown in [C3] and [C4] that the 
weighted distances correlation function gives better results compared to the least square 
correlation function. 
 
 
C.2.4 Solvers and the matching procedure 
 
 

2

1

3

 
   
 

��������	�: Coarse grids [C4]. 
 
There are many types of solvers [C4] to find the global extreme of the cost or correlation 
function. The robust solver [C3] for instance, works with a search window, i.e. for every 
DoF only for the so-called master DoF’ s an interval is defined, centered around the main 
initial guess. Initial guess on the shifted in x and y-direction and rotated in xy-plane images 
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at first is done by just looking at the roughness itself. The initial guess of the remaining 
DoF’ s and its intervals are determined by the software. A coarse grid (Fig. C.3) was used in 
the robust solver to limit the search window and accordingly speed up the calculation 
process. While for the other solver, downhill simplex for example, this coarse grid allows 
larger search intervals and avoids getting stuck in local extremes on the finer grids. The 
optimal fit on the coarse grid is a proper estimation of the best fit on the next finer grid and 
the search interval can be reduced to the finer grid. This because the difference between the 
high resolution (fine grid) image and the low resolution (coarse grid) image is high 
frequency related and therefore information is localized. 
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��������	: Flow chart of the matching process [C3]. 
 
The matching procedure of the matching of two surfaces is shown in Fig. C.4. After 
preprocessing, the search for a first approximation of the master DoF’ s is started on the 
aaaaa 
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��������	�: Matching and stitching of 6 images and its difference (c) before (a) and after 

(b) experiment [C3]. 
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coarsest level. The macro-geometry is removed only in this level. Next, the level is 
increased by one and followed by entering the level loop. This loop is repeated until the fit 
on the finest level is achieved. The difference stop criterion, ε, to the cost function must be 
applied after the last loop, in order to get convergence. The complete cycle from the second 
coarsest level up to the value of the cost function on the finest level must be repeated at 
least once to be able to calculate the stop criterion. If this is not satisfying, the cycle begins 
again at the second finest level. There is no need to start at a coarser level, since the 
changes of the DoF’ s take place mostly on the scale of the finest level. Therefore the loop is 
started at the second finest level for ‘safety’  reasons. 
 
 
C.3 Application example 
 
The matching and stitching has been applied to determine the change of a steel surface 
topography on a ball-on-disc sliding experiment [C3]. By the naked eye, it is very difficult 
to distinguish the image between before and after an experiment (Fig. C.5a and C.5b). From 
the difference image (Fig. C.5c) it is clear that deformation/wear occurred. A 15 nm deep 
groove is already visible. This concludes the robustness of the method for determining the 
changes in micro-geometry of surfaces.    
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Appendix D 
 
Photographic impression of the experimental 
equipment 
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: Pin-on-disk machine. 
 
 

            
 

��������	�: Tensile testing machine. 
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��������	�: Static indentation (x-y table) setup. 
 
 
 
 
 

 
 

��������	: Rolling contact running-in setup. 
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Appendix E 
 
Thickness effect on the pressure required in 
surface bulk compression 
 
 
 
 
 
 
 
 
The condition for compression of a bulk specimen by hard dies is illustrated in Fig. E.1a. In 
this case, a circular blank specimen is assumed to be reduced in thickness after 
compression. It is also assumed that the volume is conserved so that the radius of the blank 
increases and the thickness decreases as the load increases, see Fig. E.1b. In general, the 
pressure required for the compression depends upon: (a) the inherent flow stress of the 
material; (b) the strain pattern as determined by the configuration of the part; and (c) the 
effects of friction [E1].  

In analyzing the effect of friction, three mechanisms are recognized as follows. 
Firstly, relative sliding (slip) occurs between the blank specimen and the die surface at all 
points, except in the center of the specimen. Secondly, relative motion does not happen and 
the spreading action results from shear strain in the blank surface parallel to the die surface 
(stick). Thirdly, the intermediate condition between the stick and slip condition. In the 
following analysis, the first mechanism is assumed. 

The differential equation for stress distribution based upon the stress state in Fig. 
E.1c can be expressed as: 

 

t
f

rr
crr 2−=−+

∂
∂ σσσ

 (E.1) 

 
where σr is the principal stress in radial direction, σc is the tangential stress, r is the variable 
radius, f is the unit friction force and t is the thickness of the specimen. By using the shear-
strain energy of von Mises as a criterion for yielding, the yield stress, Y, can be related to 
the applied stresses as:  
 

( ) ( ) ( ) 2222 2Ynccrrn =−+−+− σσσσσσ  (E.2) 
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where σn is the principal stress in normal or thickness wise direction. In this simple 
compression situation the general stress state is that of uniaxial compression combined with 
a hydrostatic pressure σh, thus: 
 

hn Y σσ +=  and hcr σσσ ==  (E.3) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 

���������	: Compression of a blank specimen: (a) compression configuration, (b) 
geometry of the blank and (c) the stress state on an element, after [E1]. 
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By the principal of transmissibility of forces it may be recognized that: 
 

pn =σ  (E.4) 
 
where p is the normal pressure applied by the die to the element. The friction force can be 
related to the normal pressure as: 
 

pf µ=  (E.5) 
 
where µ is the coefficient of friction. Combining Eqs. (E.1) to (E.5) yields: 
 

dr
tp

dp µ2−=  (E.6) 

  
 Integrating Eq. (E.6) yields the expression for the pressure with the boundary 
conditions p = p at r = r and p = Y at r = R as: 
 

( ) trRe
Y
p /2 −= µ  (E.7) 

 
where R is the blank specimen radius after compression. According to Eq. (E.7) the 
maximum pressure pmax occurs at r = 0 as: 
 

tRYep /2
max

µ=  (E.8) 
 
The average required or die pressure may be obtained by the basic expression below: 
 

�� =
b

a

b

a

a rpdrrdrp ππ 22  (E.9) 

 
where a and b are any conditions for lower and upper limits of a variable radius r. In this 
analysis a = 0 and b = R so that by substituting these values and Eq. (E.7) into Eq. (E.9) and 
integrating between the given limits yields: 
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where 
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Appendix F 
 
Asperities determination of real rough surfaces 
 
 
 
 
 
 
 
 
A method to model the micro-contacts of real rough surfaces by elliptical paraboloids will 
be described in this appendix. The model is based on a volume conservation method.  

An elliptical paraboloid is defined as a paraboloid having an elliptical cross-
section in the xy-plane and paraboloids in the xz- and the yz-plane respectively. In a 
mathematical form, this elliptical paraboloid is expressed by [F1]: 
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 (F.1) 

 
where x, y, and z are the coordinate system and a, b, c are constants. The volume displaced, 
V, due to contact of this elliptical paraboloid is the same as the volume above a certain cut-
off height (volume conservation), hence: 
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The limits of integral in Eq. (F.2) are determined as follows. For the z-coordinate, the upper 
integration limit is the cut-off height ω of the micro-contact as:  

 
ω=lowz  (F.3) 

 
and the lower limit is determined rearranging Eq. (F.1) into: 
 

( )2222
22 aybx

ba
c

zhigh +=  (F.4) 

 
 



 

 

174

For the y- coordinate, the following equations are valid at the edge of the contact: 
 

( ) ω=+ 2222
22 aybx

ba
c

 (F.5) 

 
and by solving y in Eq. (F.5) gives: 
 

( )22 cxac
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b

ylow −−= ω  (F.6) 

 

( )22 cxac
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b

yhigh −= ω  (F.7) 

 
Now, the integration limits for x are left to consider. These can be determined by 
substituting ylow = yhigh = 0 into Eqs. (F.6) and (F.7) which results: 
 

c
axlow
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c
axhigh

ω=  (F.9) 

 
By substituting Eqs. (F.3) – (F.9) into Eq. (F.2) prior to integration and simplifying yields:  
 

2

2
ωπ

c
ba

V =  (F.10) 

 
The length of the micro-contact area in x-direction Lx is calculated by subtracting 

Eq. (F.9) by Eq. (F.8) as:  
 

c
aLx

ω
2=  (F.11) 

 
and the length of the micro-contact area in y-direction Ly is calculated by subtracting Eq. 
(F.7) by Eq. (F.6) at x = 0 as:  
 

 ω22 ca
ac
b

Ly =  (F.12) 

 
Substituting Eqs. (F.11) and (F.12) into Eq. (F.10) results into a new expression for the 
volume as: 
 

 ωπ yx LLV
8
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Curvature is defined as the second derivative of the elliptical paraboloid, thus the 
curvature κx in x-direction and the curvature κy in y-direction are found by applying the 
second derivative to Eq. (F.1) as:   
 

 c
ax 2

2=κ  (F.14) 

 

 c
by 2

2=κ  (F.15) 

 
A combination is made by rearranging Eqs. (F.10) – (F.15): 
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Substituting Eq. (F.17) into Eq. (F.16) and rearranging gives the final expressions for the 
elliptic paraboloid that will be used for ‘fitting’  the real micro-contact region as: 
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The volume V and the contact area A in Eq. (F.18) are determined from the micro-geometry 
measurement, therefore, the fitting elliptic paraboloid has the same volume and contact area 
as the as measured micro-contact region. 
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Summary 
 
 
 
 
 
 
 
 
Running-in is a phenomenon which occurs shortly after the start of the contact between 
fresh solid surfaces. Before the contacting solid surfaces reach a steady-state operation 
situation there is a running-in period for enhancing the surface contact performance. 
Changes in the surface topography, friction, temperature and wear rate are commonly 
observed. The properties of two mating surfaces are continuously and monotonously 
changing during this initial stage of operation. These changes are advantageous when the 
running-in process succeeds, i.e. the degree of the conformity increases so that the load-
carrying capability and its reliability and life improves. Running-in is a fundamental 
behavior of newly manufactured surfaces and is beneficial. Ignoring the running-in aspects 
means overlooking the important clues to the evolution of conjoint processes which leads to 
the final long-term steady-state friction and wear behavior. Running-in is a very complex 
and vast problem area. The running-in period depends upon many factors, chemically or 
mechanically, such as surface topography, macro-geometry, material and the operating 
conditions. However, for a given contact situation with the same operating conditions, the 
running-in performance is mostly determined by the initial surface topography. Plastic 
deformation in normal direction (perpendicular to the surface), and mild wear, are the two 
dominant mechanisms. For pure rolling contact situations the mild wear contribution is 
omitted.   
 This thesis deals with running-in of the pure rolling contact situation operating in 
the boundary lubrication regime, so that normal plastic deformation due to the contact 
between asperities is the main aspect. The change of the surface topography during the 
running-in process and the run-in surfaces are predicted locally. The main theme concerns 
the elastic-plastic asperity contact model. 
 An asperity micro-contact model was considered due to its analytical nature and a 
well-ploughed study. A new single elliptic elastic-plastic asperity contact model has been 
proposed and demonstrated as the best prediction to the experimental results among the 
other models. Plastic deformation appears when the applied load is removed; therefore, the 
developed asperity contact model was extended to the unloading case. 
 Most engineering surfaces are rough on micro-scale. This roughness is developed 
from the population of asperities with different heights and curvatures. It turns out that 
ideas from the single asperity contact may be adapted to the multiple asperity contact. 
Surface asperities do not perfectly follow certain shape geometry like spherical or 
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paraboloidal, but protrude randomly in the three-dimensional space instead. Hence, a new 
method, the volume conservation method, was adapted to determine the asperity geometry 
and height. Once all the asperity contact parameters are determined, a deterministic elliptic 
elastic-plastic contact of rough surfaces is applied. In the contact of rough surfaces, another 
phenomenon is revealed, namely bulk (macro-geometry) deformation, whereas the running-
in concerns with micro-geometry or roughness only. To overcome this problem, a new 
criterion has been developed to maintain the running-in of the contacting surfaces so that it 
operates in the regime in which bulk deformation does not occur. 
 Rolling contact of rough surfaces was modeled by loading-unloading-translating 
the contacting surfaces. The run-in surfaces are indicated by the elastic deformation of all 
the asperities in contact during subsequent loading-unloading. The proposed theoretical 
prediction agrees well with the experimental results.     

   



 

 
 
 
Samenvatting 
 
 
 
 
 
 
 
 
Inlopen is een verschijnsel dat optreedt vlak nadat twee oppervlakken voor de eerste keer 
met elkaar in contact komen. De totale inloopperiode, dat wil zeggen vanaf het eerste 
contact totdat er een stationaire situatie is bereikt, heeft meestal tot doel de contactsituatie te 
verbeteren. Tijdens het inlopen worden vaak veranderingen in oppervlakte geometrie, 
wrijving, temperatuur and slijtage waargenomen. Deze veranderingen vinden continu plaats 
en vaak op een monotone wijze. Wanneer het inloopproces succesvol wordt doorlopen, 
leiden deze veranderingen tot een verbeterde conformiteit van de oppervlakken. Hierdoor 
worden de belastbaarheid, betrouwbaarheid en levensduur van het contact verhoogd. 

Inlopen is een fundamenteel aspect van nieuwe (in de zin van ongebruikte) 
oppervlakken en heeft een positief effect op het functioneren van de oppervlakken. Het 
verwaarlozen van dit proces heeft tot gevolg dat belangrijke aspecten die het verloop 
bepalen van de gezamelijke processen die leiden tot het uiteindelijke wrijvings- en 
slijtagegedrag, onopgemerkt blijven. 

Inlopen is een zeer complex proces en een enorm probleemgebied. De totale 
inloopperiode hangt af van factoren van zowel mechanische als chemische aard, zoals 
oppervlakte geometrie, macro geometrie, het materiaal en de operationele condities. Voor 
een gegeven contact situatie en operationele condities is de oppervlakte geometrie de 
bepalende factor. Plastische deformatie loodrecht op het oppervlak en milde slijtage zijn de 
twee dominante processen die verantwoordelijk zijn voor de verandering in oppervlakte 
geometrie. In geval van puur rollen kan de milde slijtage achterwege worden gelaten. 

Dit proefschrift behandelt inlopen van contacten verandering in micro-geometrie, 
onder condities van puur rollen. Dit heeft tot gevolg dat plastische deformatie loodrecht op 
het oppervlak het belangrijkste onderwerp is. De verandering in oppervlakte geometrie 
wordt op lokaal niveau voorspeld. Een elatisch-plastich contact model is hierbij 
onontbeerlijk. 

Er is gekozen voor een contact model op ruwheidsniveau vanwege het anlytische 
karakter. Op basis hiervan is een elastisch-plastisch contact model ontwikkeld dat geschikt 
is om de vervorming van een enkel elliptisch gevormde ruwheidstop te beschrijven. In het 
algemeen blijft een top na belasten plastisch gedeformeerd. Om ook dit goed te kunnen 
beschrijven, is het model uitgebreid met de ontlastfase. 

Het merendeel van de oppervlakken is ruw op microschaal. Deze ruwheid kan 
worden beschreven door middel van een verzameling ruwheidstoppen, met ieder een eigen 
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hoogte en kromming. Het blijkt dat het model dat ontwikkeld is voor een enkele top, ook 
kan worden gebruikt om de vervorming van een verzameling van toppen te beschrijven. Op 
deze manier is simulatie van de vervorming van een compleet ruw oppervlak binnen 
handbereik. 

Helaas hebben ruwheidstoppen niet altijd een perfect parabolische vorm, vaak zijn 
het min of meer willekeurige uitstulpsels. Naar aanleiding hiervan is een model ontwikkeld 
op basis van behoud van volume. Dit model kan globaal worden omschreven voor het 
bepalen van een equivalente parabolische vorm van de top met willekeurige vorm. Daarbij 
zijn de volumes van beide vormen gelijk. Wanneer alle willekeurig gevormde toppen die 
het oppervlak vormen op deze manier beschreven zijn, wordt het deterministische contact 
model op ieder individueel equivalent parabolische topje toegepast.  

Wanneer twee oppervlakken met elkaar in contact komen kan naast de deformatie 
van de ruwheid ook bulk deformatie optreden. Het huidige model kan dit type deformatie 
niet simuleren. Om af te schatten onder welke condities ruwheids deformatie optreedt, is 
een criterium afgeleid dat aangeeft wanneer ruwheids deformatie een significante rol gaat 
spelen. Daarmee is ook het geldigheidsgebied van het huidige model vastgelegd. 

Rollend contact van twee oppervlakken is gemodelleerd aan de hand van belasten-
ontlasten-transleren van oppervlakken. Ingelopen oppervlakken worden gekenmerkt door 
uitsluitend elastische deformatie tijden een belasten-ontlasten cyclus. De theorie komt vrij 
goed overeen met experimentele resultaten. 
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